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ABSTRACT 
Every machine learning process must rely, first of all, 
on a good collection of appropriate features from 
examined data sets. Even before feature selection stages 
and cascades of learning steps for creating complex 
features may lead to the creation of proper decisional 
spaces, the process of extracting basic features may 
reveal to be a long and cumbersome task, which 
depends on the nature of the examined information and 
on the way it is represented. In this sense, obtaining 
good and easy-to-use tools for examining collected data 
may help researchers on focusing on what they need, 
instead of dealing on how to get it. We present here our 
approach in easing the extraction of features from 
symbolic music notation, which led to the development 
of MidXLog, a query language for MIDI files built on 
top of the logic programming language Prolog. We 
briefly introduce some of the characteristics of this 
language, and then describe its use in processing MIDI 
files to obtain an interesting range of features for the 
MIREX challenge 
 
Keywords: Query-Language for MIDI, Feature Space 
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1 DEVELOPING MIDXLOG 
After our first exploration on music genre recognition 
[1], we felt the need for a tool, not only useful to ease 
the feature extraction process, but also able to support 
statistical analysis of MIDI data on the fly.  We did not 
just required indeed a tool, but a complete query 
language over MIDI files. 

Our approach has thus been oriented towards extend-
ing an existing language, which matched the following 
requirements: 
• be an interpreted language: on the fly querying of 

MIDI files is a must for researcher performing ex-
tensive analysis of data. A compile–and–run ap-
proach is mostly suited for systems which already 
know what to do, while the possibility of interact-
ing via console grants more possibilities during 
domain analysis, testing and debugging. 

• be a declarative language: language expressions 
should be oriented as much as possible towards de-
scribing the results rather than explaining how to 
get them 

• be a Turing-complete language: the expressive 
power of a Turing-complete language could help 
not only properly in querying midi files, but also to 
manipulate their content. 

Our choice fell on the logic programming language 
Prolog [3], as for its easy-handling capabilities for lists 
and structures, proved to be a good basis upon which 
developing our query language. We thus built on top of 
Prolog a series of high-level primitives for querying 
MIDI files, which, combined with standard logical 
predicates, produced an easy-to-use and powerful query 
language: MidXLog. Instead of adopting a dedicated 
Prolog-driver for reading MIDI files, we developed a 
translator from standard MIDI format to the MidiXML 
format [2], using standard Java APIs for querying MIDI 
events. When started over a given MIDI File, the 
MidXLog interpreter thus calls the Java translator and 
then loads the produced MidiXML document into 
memory, as a complex structure representing MIDI 
general data and lists of MIDI events. 

We do not enter in details on all the characteristics 
of the language, just limiting to mention the main gen-
eral filtering primitive, which assumes the following 
form: 
filter_events(F, Events, FiltEvents) 
where Events is the list of MIDI Events, FiltEvents is 
the list of Filtered Events and F may be a filter of the 
form: 
filter(FTYPE, Event) 
where FTYPE may express different filters based on 
time intervals, channels, tracks, Note On/Off etc… 
and/or complex combinations of them. 
The query-by-proof approach of Prolog helps in easily 
redefining particular filters which are subject to specific 
exceptions. For example, the semantics of a “Note Off” 
may be expressed both through a real “NoteOff” event 
than through a “NoteOn” event with Velocity=”0”. So, 
while the generic filter(type(TYPE), Event) filters 
events using TYPE as unique index, the specific call to 
filter(type(“NoteOn”), Event) or filter(type(“NoteOff”), 
Event) behaves differently according to the above con-
straint. 

As an additional feature, it is possible to combine 
different filters through logical operators AND, OR and 
NOT so that, for example: 
filter_events(((F;G),\+H), Evs, FEvs) 



 
 
retrieves all the elements which satisfy filter F or G and 
which do not satisfy filter H. 

As mentioned above, filtering primitives may then 
combined with list/set-based logical predicates and 
math operators which are part of Prolog, to offer a 
complete query language for MIDI. 

2 FEATURE EXTRACTION 
ARCHITECTURE FOR MIREX 

Before extracting features, each MIDI file is subject to a 
pre-processing phase in which some of the structures 
which will be often reused during the feature extraction 
step are generated. The motivations behind these 
preprocessing phase can be roughly bring back to two 
main concepts: 
• normalization: different descriptions of the same 

musical information (on quantitative and qualita-
tive grounds) must be projected in unique represen-
tational plane 

• optimization: in this case, the information is simply 
maintained as it is (or even reduced), but is trans-
lated in a new form which can reduce computa-
tional time for many of the queries needed in the 
feature extraction phase. 

In the following sections we present some of the pre-
processing steps which we adopted for our feature ex-
traction system. 

2.1 Handling sections with different TimeSignature 
And/Or KeySignature 

For analysis of a certain kind, it is important to keep 
track of the Time and Key Signature on the different 
sections. To this end we preferred to separate, once for 
all, the whole set of MIDI events in different sections 
where the Time and Key Signature remain constant. 

The output of this step is a sequence of structures of 
the form: 
(TimeSignature,KeySignature)-Section 
where Section is the partition of the whole set of 
events which is characterized by the given TimeSig-
nature and KeySignature, the value of which is 
decided by the following heuristic: 

 
If   ( “midiPiece contains only one KeySignature” 
         AND  
         KeySignature(time(0)) == 'C' ) 
Then guessKeySignatures(midiPiece) 
Else computeKeySignatures(midiPiece) 

 
where both computeKeySignatures and guessKeySigna-
tures try to guess which is the harmonic tonal centre of 
the piece basing on note distribution of pitched instru-
ments (patches 0-111 played on all channels apart from 
10) and on other heuristics, with the sole difference that 
computeKeySignatures takes the number of reported 
fifths as a strong and reliable evidence for computing 
the Key Signature, while guessKeySignatures is only 
partially biased by the solution represented by C (or 
Am) but must verify this conjecture over solid data veri-
fication. This approach is due to typical lack of reported 
KeySignature, which is then exported by sequencers in 

the form of a misleading value of 0 on MIDI piece’s 
fifths value. 

Guessing in advance the central tone of the piece is 
crucial as we reported many of the note-related features 
in terms of their relative grade (with reference to the 
fundamental tone) instead of their absolute value. 

2.2 Handling instrument sections 

Due to different MIDI formatting styles which depends 
on user habits and conventions, we often found 
disturbing phenomena which fall in these two 
categories: 
• multiple tracks per same channel/instrument (e.g. 

left/right hands tracks and/or channels used for 
piano-like instruments, or many tracks per channel 
10 used for separating drum instruments) 

• multiple instruments on the same channel (e.g. in 
line program changes) and vice versa (e.g. six-
channelled instruments, necessary choice when 
playing guitar-synths). 

For dealing with such phenomena, we almost com-
pletely ignored (except when it may reveal useful) the 
concept of track, in favour of analysis based exclusively 
on adopted: 
• channels 
• instruments played on those channels 
We thus take account of program changes on the same 
track as well as of cases where the same instrument is 
played on two or more different tracks/channels, and 
produce a list of entries like the following: 
instr(Instr,InstrSectionDelimiters) 
where Instr is a given instrument which is played 
along the piece and InstrSectionDelimiters is 
in turn a list of elements like: 
StartTS-EndTS-ListOfChannels  
reporting Timestamp intervals where the instrument is 
played, and for every interval the list of channels 
hosting notes for Instr. 

To augment performance in the feature extraction 
phase for channel based queries, this structure may also 
be rewritten in terms of "sections of Time per Channel 
wrt a list of selected instruments”, so that, for example, 
the list of instruments’ related info: 
[instr(32, [0-355200-[2]]), instr(0, 
[0-177200-[3]]), instr(29, [0-1920-
[16], 143828-212984-[16], 281236-
355200-[16]]), instr(30, [74676-
143828-[16]]), instr(7, [177200-
355200-[3]])] 
is converted into this new form: 
[2-[0-355200], 16-[0-1920, 74676-
212984, 281236-355200], 3-[0-355200]] 
which is notably easier to handle once a bunch of 
instruments has been selected. 

3 USE OF MIDXLOG FOR MIREX 
MidXLog proved to be a much useful instrument for 
inspecting musical data. The high level MIDI querying 
specific query calls, together with Prolog built-in logical 



 
 
and meta-logical predicates offered a whole range of 
operational primitives combined with the more 
declarative aspects of a proper query language. 
Unfortunately its development initiated just before our 
adhesion to the challenge, and this affected the number 
of feature categories we were able to prepare for our 
system. These are the features we examined: 

 
Notes Distribution: The frequency with which each 

note appears in the piece (every note is a set compre-
hending its different octaves, and is expressed as a rela-
tive grade wrt the fundamental tone, which is in turn 
recalculated for every section of the piece with a stable 
Key Signature). Note frequency is normalized wrt the 
number of notes played for the whole piece on pitched 
instruments. For pitched instruments we intend all 
STANDARD MIDI instruments belonging to patches 0-
111, to avoid disturbs which could arise from percus-
sive instruments (patches 112-119) repeatedly played 
on only a few notes along the piece and to exclude notes 
played on SFX instruments (patches 119-127), the pitch 
of which typically bears a low correlation with a piece's 
tonal mood. 
 

Drum instruments Distribution: Same as notes dis-
tribution for pitched instruments, but in this case notes 
are not reported as a relative grade wrt the fundamental 
tone, nor collapsed upon different octaves of the same 
tone, as each different pitch represent a totally different 
drum instrument. 

 
Pitched/Percussive/SFX/Drums Percentage: Per-

centage of notes played by these classes of instruments. 
 

Melodic Intervals: All the basic melodic intervals 
(for each instrument) within an octave are considered 
as a numeric feature: legal values indicate the relative 
frequency for each different melodic interval within the 
MIDI song. 
 

Instruments (Single Instruments, Binary and 
Weighted): The 128 patches of the General Standard 
MIDI patch set surrogates the notion of instrument tim-
bres. We reported both binary vectors which were cal-
culated upon simple presence of the instrument in the 
piece, and vectors compiled upon the normalized 
weighted presence of Instruments/Instrument Classes, 
in terms of played notes per instrument wrt total num-
ber of played notes on all considered instruments. 
 

Instrument Classes and Drum-kits: Analogous vec-
tors of those for single instruments, but related to in-
strument classes. Each GSM patch is associated to ex-
actly one of the common sixteen different instrument 
classes (i.e. Piano-like instruments, Strings, Synth 
Pads, Brass and so on). For drums, we considered the 8 
different drum-sets always associated with the MIDI 
channel 10. The different instrument classes and drum 
kits are here expressed both as boolean features and 
weighted normalized features. 
 

Tempo Related Features: such as: 
§ number of tempo changes inside the piece 

§ standard deviation of stable times (stable times are 
times where the tempo remains unchanged). Times 
have been left as they were and being normalized 
wrt the length of the piece. 

§ standard deviation of relevant stable times only 
(relevant times exclude local and gradual tempo 
changes, as for crescendo over time). 

§ weighted mean time: mean time taken upon 
weighted measures of tempo changes, based on 
their stable time extensions 

Time-Signature Related Features: such as: 
§ number of TS changes inside the piece 
§ standard deviation of stable times (stable times are 

times where the TS remains unchanged). Times 
have been left as they were and being normalized 
wrt the length of the piece. 

§ standard deviation of relevant stable times only 
(relevant times exclude local TS changes, as for TS 
patch bars). 

§ Distribution of TS along the piece: distribution of 
different TS along the piece, weighted over their 
persistence in the piece. Several Time Signatures 
have been considered as a possible feature, while a 
generic “OthersTimeSignature” has been adopted 
for weighting unknown TSs. 

 
Key-Signature Related Features: such as: 

§ number of KS changes inside the piece 
§ standard deviation of stable times (stable times are 

times where the KS remains unchanged). Times 
have been left as they were and being normalized 
wrt the length of the piece. 

§ standard deviation of relevant stable times only 
(relevant times exclude local KS changes, as for 
certain kinds of modulations). 

§ Distribution of KS along the piece: distribution of 
different KS along the piece, weighted over their 
presence (time) in the piece. 

 
Pitch Wheel Related Features: This class of fea-

tures gives some more notion about playing style of the 
music piece (synth-soloing, guitar bending etc…). For 
this contest we limited our investigation to analyzing 
which instruments exhibit a Pitch Wheel control during 
their performance. 

4 CONCLUSIONS 
The final MIREX results are more than encouraging. 
The two partecipating systems were based on standard 
machine learning algorithms (Naïve-Bayes (NB) and 
Decision trees) and no specific tuning on the MIREX 
task has been carried on. Most of the effort has in fact 
been spent on the development of the MidXLog-based 
infrastructure (e.g. design and development of the 
language itself, algorithms for feature matching in the 
logical formalism adopted). As a result not much time 
was available to extend the range and type of features 
according to the target musical genres [4]. Nonetheless, 
the NB classifier on the set of extracted features simpler 
than other proposals ranked slightly below the best 
overall system.  

A first analysis could suggest that normalization of 
MIDI data, handled during the preprocessing stages in 



 
 
MidXLog, may have played a strong role in removing 
some MIDI idiosyncrasies which may have been dan-
gerous. A relevant aspect is the relatively small number 
of feature types (about 20) with respect to other propos-
als.  In particular, some of these are novel, as far as we 
know, in the literature. Extensive testing will be re-
quired to judge their individual quality and how they 
impact on global performances if combined with al-
ready explored features (as in [4]). A further dimension 
to explore is the learning algorithmics: for example, in 
[1] we noticed that NB and decision trees were not al-
ways optimizing the classification accuracy. Alternative 
learning methods  ([5]) or an analysis of more complex 
learning processes (e.g. stacking or voting among cas-
cades of classifiers) is thus also a future line of research 
not explored in this work.  

The statistics behind our score, and their comparison 
with the best results of MIREX suggests that large mar-
gins for improvement exist. The overlap between the 
two outcomes is rather low. In particular, our 55% ac-
curacy for recognition of the “classical” genre is 
strongly under the 100% of the best reported result. 
Notice how this task is easier according to some our 
previous tests ([1]). On the other hand, some of our 
100% accuracy are achived over very specific genres 
(e.g. Ragtime). This is surprising as no specific feature 
set has been designed targeted to those genres. These 
discrepancies let us foresee possible improvements 
when extension including features inspired by other 
systems are applied. This would be a suitable outcome 
from the MIREX panel discussion with the other par-
ticipants. 
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