
Fast implementations for perceptual tempo extraction

Matthew Davies
Centre for Digital Music

Queen Mary, University of London
Mile End Road, United Kingdom

matthew.davies@elec.qmul.ac.uk

Paul Brossier
Centre for Digital Music

Queen Mary, University of London
Mile End Road, United Kingdom

paul.brossier@elec.qmul.ac.uk

ABSTRACT

We provide an overview of two algorithms submitted for
the Audio Tempo Extraction contest within MIREX 2005:
A non-causal Matlab implementation (Davies submission)
[4] and a real-time C implementation (Brossier submis-
sion) [3]. Both algorithms extract a primary and sec-
ondary tempo, associated phase values for each tempo and
the relative salience of the slowest tempo. Results indicate
that in comparison to other algorithms in the evaluation
our approaches placed 9th and 12th out of 13 submissions,
and were the two fastest implementations.

1 Non-causal Implementation

1.1 Overview

• An onset detection function (DF) is generated from
the audio

• The autocorrelation function (ACF) of the DF is
taken

• The ACF is passed through a shift-invariant comb fil-
terbank to extract the primary tempo

• Given this tempo value, the time signature is esti-
mated

• A secondary tempo is derived from the primary
tempo and time-signature, and tempo saliences are
calculated

• The phase of each tempo is found by cross-
correlating the DF with a weighted impulse train

A graphical overview showing the extraction of a primary
beat period from an audio input signal is given in Fig. 1.

1.2 Pre-Processing

The first stage in the algorithm is to transform the input
audio signal into a suitable representation on which to per-
form the tempo analysis. We choose the complex spectral
difference onset detection function (DF) [2]. The DF is
generated by measuring spectral difference (in the com-
plex domain) between target and observed STFT frames,
exploiting phase inconsistencies to emphasise tonal onsets

Figure 1: Overview of tempo extraction algorithm. The a
detection function (DF) is generated from the audio sig-
nal. We take the autocorrelation function (ACF) of the
DF, and pass through a shift-invariant comb filterbank to
identify the beat period. This is then converted to a tempo
estimate.

and energy changes for percussive onsets. The DF is cal-
culated using a window length of 1024 samples with a 512
sample hop size, giving a temporal resolution of 11.6ms.
Before undertaking any tempo analysis, the DF is further
processed. It is low pass filtered, after which an adap-
tive median threshold is generated (16 sample window, 15
sample overlap), which is subtracted from the smoothed
DF to give the final input to the system.

1.3 Tempo extraction

The unbiased autocorrelation function (ACF) of this mod-
ified DF is then found, from which only the first 512 sam-
ples (equivalent to 6 seconds of audio) are retained. The
ACF is then passed through a shift-invariant comb filter-
bank to extract the primary beat period (from which the
tempo can be inferred). The filterbank (implemented in
matrix form) is comprised of 4 comb elements, where
each column represents a different beat period hypothe-
sis (increasing in periodicity with a lower tempo bound
of 40bpm) and each row of the matrix is weighted by a
tempo preference curve (derived from the Rayleigh distri-
bution function) to emphasise beat periods equivalent to
tempi in the range of 75 to 150 bpm. An estimate of pri-
mary beat period,τ , is found as the index of the maximum
of the output of the filterbank (see Figure 1). This value
is then refined by averaging the indices of local maxima
at integer multiples of the beat period within the ACF and
converted to tempo (in beats per minute) using the follow-
ing equation:

tempo =
60

(τ ∗ 0.0116)
(1)

where 0.0116 represents the resolution of the detection
function.

1.4 Finding a secondary tempo

Given this primary tempo, we then seek to find another
tempo hypothesis consistent with the metrical structure of
the input as a likely candidate at which human subjects
would tap in time. We first attempt to classify the time
signature, as either duple or triple, by evaluating the sum
of energy within the ACF at multiples of 2 and 3 of the
beat period. The secondary tempo is then derived using a
simple rule based approach, and is a function of the time
signature and a fixed tempo threshold of 120bpm, taken as
an approximate mean tempo value irrespective of musical
genre [5].

• If primary tempo> 120 bpm, and time-sig is duple,
then secondary tempo is primary * 1/2

• If primary tempo< 120 bpm, and time-sig is duple,
then secondary tempo is primary * 2

• If time-sig is triple, then secondary tempo is primary
* 1/3

If the initial tempo is quicker than 120 bpm, we assume
it is most likely that a secondary tapping rate would be
half this initial rate (e.g. a pairing of 130 bpm and 65
bpm seems intuitively more likely than 130 bpm and 260
bpm to describe human tapping behaviour). Conversely, if
the primary tempo is slower than 120bpm, then we should
double the tempo hypothesis. These two rules assume that
the time signature is duple, if we find it to be triple, then
we attempt to find the bar length tempo as the second met-
rical level (i.e. in triple cases, we always try to find a
slower tempo).

1.5 Tempo Salience

We choose to measure the salience of a tempo hypothe-
sis as a function of the distance of the tempo to the set
threshold of 120 bpm. The salience is found as:

salience = 1 − |tempo − 120|/120 (2)

The salience values for the primary and secondary tempi
are normalised such that their sum is equal to 1. We re-
tain the salience of the slower tempo, to be used in the
evaluation of our algorithm.

1.6 Beat Phase

The phase of each tempo hypothesis is found by cross-
correlating the first 512 samples of the DF with an impulse
train (impulses at beat period intervals) and finding the
index of the maximum output. In each case the search is
only as far as 1 beat period from the start of the file. To
give most emphasis to the start of the file, the impulses are
linearly weighted, with the first being the strongest and the
last being the weakest.

2 Real-time Implementation

The real-time implementation proposes a fast and causal
version of the Matlab algorithm. In contrast to the non-
causal model which finds a single phase for each tempo
hypothesis, the real-time algorithm identifies all beat lo-
cations by repeating the processes for beat period induc-
tion and phase alignment on an overlapping frame basis
across the length of the file. At the beginning of a file or
during a tempo change, the prediction mechanism may re-
quire several seconds to settle on a fixed value, depending
on the salience of the tempo and the nature of the music
signal.
For the purpose of the contest, two lists of tempo candi-
dates are derived from the beat locations, one containing
the fast candidates, the other ones at slower tempi. The
selection of a secondary tempo is entirely based on the
primary candidate, using halving and doubling around a
split tempo of 95 bpm, regardless of the signature and
ignoring triple cases – the time signature was not read-
ily available in the real-time implementation at the time
of the submission. From each detected beat location, a
tempo candidate is computed, and its fast and slow ver-
sions are stored in each list. The final two tempi T1 and
T2 are derived from the most frequent occurrences in both
candidate lists. Given the causal nature of the algorithm,
all beat locations are predicted solely from past evidence.
To estimate the phase of the first beats within each ex-
cerpt the phase values are mapped back to the beginning
of the file from the beat locations found after a given de-
lay and when a fixed number of identical tempo have been
detected consecutively. The salience of each candidate is
derived from the likelihood found in each tempo list.
The real time implementation of the beat tracking al-
gorithm is available as a shared library of functions,
aubio, licensed under the GNU General Public License,
at http://aubio.piem.org.

3 Results

3.1 Training Data

A small annotated database of 20 files (each 30 seconds
in length) was provided to each participant upon which
their tempo extraction algorithms could be trained. We
tested our algorithms on a 2.8GHz Intel PC running De-
bian GNU/Linux 3.1. The Matlab (version 7) algorithm
completed execution of the 20 training files in 76 seconds
- averaging 3.8 seconds per 30 second input file. The real-
time C implementation (compiled using GCC) completed
execution in 16 seconds - averaging 0.8 seconds per 30
second input file.

3.2 Test Data

The accuracy measure used to evaluate the algorithms was
calculated as a combination of the success of the algorithm
in the following tasks:

• TT1: The primary tempo within 8% of the ground
truth annotation

• TT2: The secondary tempo within 8% of the ground
truth annotation

• TT1I, TT2I: An integer multiple of each tempo
within 8%

• ST1: The relative salience of the slower tempo, com-
pared to the ground truth, ST1GT

• TP1: The phase of T1 within 15%

• TP2: The phase of T2 with 15%

which were combined to give a P-score for each file:

P = 0.25 ∗ TT1 + 0.25 ∗ TT2

+0.10 ∗ TT1I + 0.10 ∗ TT2I

+0.20 ∗ (1.0 − |ST1 − ST1GT |

/max(ST1, ST1GT))

+0.05 ∗ TP1 + 0.05 ∗ TP2

The test database contained 140 excerpts, from which the
overall P-score was defined as the mean of all individual
values. The time taken to process the database was also
recorded to indicate the differences in speeds of the eval-
uated algorithms.
An overview of results1 for our algorithms compared to
the winning algorithm, (that of Miguel Alonso [1]) are
given in Table 1, and include the P-score, Runtime and
the percentage of files where at least one tempo was cor-
rectly identified. Of the 13 submissions to the evaluation,
our algorithms placed 9th (Davies) and 12th (Brossier),
and were the two fastest implementations.

1A more detailed breakdown of results can be found at
the following url: http://www.music-ir.org/evaluation/mirex-
results/audio-tempo/index.html

Algorithm P-score One Tempo Runtime
Correct (%) (s)

Davies 0.628 95.00 1005
Brossier 0.583 86.43 180
Alonso 0.689 80.71 2875

Table 1: Results table showing P-score, the percentage of
files for which at least one tempo was correctly identified
and the Runtime, for the Davies, Brossier and Alonso al-
gorithms

ACKNOWLEDGEMENTS

Special thanks to the entire MIREX team for overseeing
the evaluation, and to Martin McKinney for proposing the
contest.
This research has been partially funded by the EU-FP6-
IST-507142 project SIMAC (Semantic Interaction with
Music Audio Contents). More information can be found
at the project website http://www.semanticaudio.org.

References

[1] M. Alonso, B. David, and G. Richard. Tempo and
beat estimation of musical signals. InProceedings
of the 5th International Conference on Music Infor-
mation Retrieval (ISMIR), pages 158–163, Barcelona,
Spain, October, 2004.

[2] J. P. Bello, C. Duxbury, M. E. Davies, and M. B. San-
dler. On the use of phase and energy for musical onset
detection in the complex domain.IEEE Signal Pro-
cessing Letters, 11(6):553–556, July 2004.

[3] M. E. P. Davies, P. M. Brossier, and M. D. Plumbley.
Beat tracking towards automatic musical accompani-
ment. InProceedings of the 118th Convention of the
AES, Barcelona, Spain, May 28–31, 2005.

[4] M. E. P. Davies and M. D. Plumbley. Beat tracking
with a two state model. InProceedings of the IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP 2005), volume 3, pages
241–244, Philadelphia, USA, March 18–23, 2005.

[5] L. van Noorden and D. Moelants. Resonance in the
perception of musical pulse.Journal of New Music
Research, 28(1):43–66, March 1999.

