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ABSTRACT 
This publication presents a method for the automatic 
detection and classification of three distinct drum in-
struments in real world musical signals. The regarded 
instruments are kick, snare and hi-hat as agreed by the 
participants of the contest category Audio Drum Detec-
tion within the 2nd Annual Music Information Retrieval 
Evaluation eXchange (MIREX 2005). There are two 
challenging issues inherent to drum sound recognition in 
polyphonic music. The first problem is that the drum 
sound itself can vary greatly within the same instrument 
class, due to playing techniques, recording situation and 
electronic effects. The second apparent problem is the 
interference and masking with all other instruments 
sounding simultaneously with the drum in a musical 
signal, making it difficult to reliably detect occurrences 
of a certain drum type. The method outlined here 
achieves a solution to these problems by extending a 
source separation approach described in earlier publica-
tions with spectrogram templates and a more elaborate 
classification approach. Performance results of the sys-
tem are given by the outcomes of the Audio Drum De-
tection contest within the MIREX 2005. 
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1 INTRODUCTION 
For an in depth introduction to the motivation, problems 
and particularities of the audio drum detection task this 
document refers to [1]. Said paper also features a quite 
extensive section concerned with the state of the art at 
time of its publishing. For the sake of completeness this 
document pays attention to more recent works. In [2] 
Hidden Markov Models are compared against Support 
Vector Machines regarding their performance for the 
task of feature-based drum loop transcription. In [3] non-
negative matrix factorization of the spectrogram is used 
in conjunction with pre-trained instrument spectra. Deg-
radation of the model’s performance is reported for sig-
nals that do not contain the expected instruments. To 
identify drum sounds in excerpts taken from polyphonic 
audio signals, feature-based percussion instrument sound 
models specialized on individual polyphonic audio re-
cordings are proposed in [4] to achieve robustness 
against the distortion of features by concurrent instru-
ment sounds. In [5] the signal is decomposed on the as-
sumption on non-negative sparse source spectra and 
used for detection of kick and snare. A spectrogram-

based template adaption and matching method is intro-
duced with promising results for detection of kick and 
snare in [6].  

2 SYSTEM OVERVIEW 

2.1 Block diagram 

An overview of the proposed system is presented in fig-
ure 1. It depicts that the signal processing chain can be 
subdivided into three main stages. The first step is the 
collection of onset times and corresponding onset spec-
tra. Subsequently higher order statistical computations 
follow in order to estimate frequency and amplitude 
bases of the involved drum instruments, thus providing a 
decomposition into source components. Finally, a re-
finement stage that validates and enhances the interme-
diate results found so far delivers the classification and 
detection results. The subsequent sections will give a 
more in depth account of the different stages endorsed in 
the given diagram. 

2.2 Onset Spectra Detection & Storage 

The digital audio signals used for further analysis are 
mono files with 16 bit per sample at a sampling fre-
quency of 44.1 kHz. A spectral representation of the pre-
processed time signal is computed using a Short Time 
Fourier Transformation (STFT). Thereby a relatively 
large block-size in conjunction with high overlap is ap-
plied. The apodization function of choice is a Hann win-
dow. One could argue that the small hop-size implied by 
the overlap factor can not compensate for the time 
smearing introduced by the large window-size, but it can 
be shown to be useful for the subsequent processing 
steps. Based on the above mentioned steps a spectro-
gram representation of the original signal is derived. The 
unwrapped phase-information Φ  and the absolute spec-
trogram values X  are taken into further consideration. 
The magnitude spectrogram X  possesses n  frequency 
bins and m  frames. The time-variant slopes of each 
spectral bin are differentiated over all frames in order to 
decimate the influence of sustained sounds and to sim-
plify the subsequent detection of transients. Half-wave 
rectification is applied in order to remove negative val-
ues introduced by the differentiation. This way, a non-
negative difference-spectrogram X̂  is computed for the 
further processing. 
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Figure 1. System Overview. 

The detection of multiple local maxima positions t  as-
sociated with transient onset events in the musical signal 
is conducted by means of peak picking in a suitable de-
tection function. This function is derived from integrat-
ing over all bins of the non-negative difference spectro-
gram and smoothing the resulting vector. Two verifica-
tion instances aim at avoiding the acceptance of small 
ripples for onsets. First, a time tolerance of 68 ms is de-
fined which must at least occur between two consecutive 
onsets. Second, the unwrapped phase information of the 
original spectrogram serves as reliability function in this 
context. It can be observed that a significant positive 
phase jump must occur near the hypothetic onset-time t . 
The main concept of the further process is the storage of 
one spectrum frame of the difference-spectrogram X̂  at 
the time of the onset. At this point, usage of an uncon-
ventionally large overlap is justified. The chance to cap-
ture the exact onset instant, where the characteristic at-
tack phase is centred in the FFT window, increases dras-
tically when applying a small hop-size. This way the 
precision of the onset spectra detection is increased and 

the common textbook statement concerning redundant 
overlap data is annulled. From the manifold of collected 
difference-spectrogram frames the significant spectral 
profiles related to the involved instruments will be gath-
ered in the next stages.  

2.3 Decomposition 

From the steps described in the preceding section the 
information about the onset times t  as well as the corre-
sponding onset spectra tX̂  is deduced. With regard to 
the goal of finding only a few significant subspaces, 
Principal Component Analysis (PCA) is applied to tX̂ . 
Using this well known technique it is possible to break 
down the whole set of collected spectra to a limited 
number of decorrelated principal components, thus re-
sulting in a good representation of the original data with 
small reconstruction error. For this purpose an Eigen-
value Decomposition (EVD) of the dataset’s covariance 
matrix is computed. From the set of eigenvectors the 
ones related to the d  largest eigenvalues are chosen to 
provide the coefficients for a linear combination of the 
original vectors according to equation (1). 

TXX ⋅= t
ˆ~      (1 ) 

Thereby, T  describes a transformation matrix which is 
actually a subset of the manifold of the covariance ma-
trix eigenvectors. Additionally the reciprocal values of 
the eigenvalues are incorporated as scaling factors yield-
ing not only a decorrelation but also a variance normali-
zation, which in turn implies whitening [7]. Alterna-
tively a Singular Value Decomposition (SVD) of tX̂  
according to [8] can achieve the same goal. With small 
modifications it is proven to be equivalent to the PCA 
using EVD [9]. The whitened components X~  are subse-
quently used as input for the Non-Negative Independent 
Component Analysis (ICA) in order to acquire the origi-
nal source components. Non-Negative ICA uses the very 
intuitive concept of optimising a cost function describing 
the non-negativity of the components [10]. This cost 
function is related to the reconstruction error introduced 
by axis pair rotations of two or more variables in the 
positive quadrant of the joint probability density func-
tion (PDF). The assumptions for this model imply that 
the original source signals are positive and well 
grounded, which means they exhibit a non-zero PDF at 
zero, and they are to some extent linearly independent. 
The first concept is always fulfilled for the data consid-
ered in this publication, because the vectors subjected to 
ICA originate from the differentiated and half-wave rec-
tified version X̂  of the amplitude-spectrogram X , 
which does not contain any values lower than zero, but 
certainly some values at zero. The second constraint is 
taken into account when the spectra collected at onset 
times are regarded as linear superposition of a small set 
of original source-spectra characterizing the involved 
instruments. This seems, of course, to be a rather coarse 
approximation, but it holds up well in the majority of the 



   
 

 

cases, which allows to separate the whitened compo-
nents X~  into their potential sources F  according to (2). 

XAF ~
⋅=  (2 ) 

Where A  denotes the dd ×  unmixing matrix estimated 
by the ICA-process, which does actually separate the 
individual components X~ . The sources F  will be 
named spectral profiles from here forth. They are used to 
extract the spectrograms amplitude basis, hereafter re-
ferred to as amplitude envelopes according to (3). 

 XFE ⋅=  (3 ) 

The extracted amplitude envelopes present relatively 
salient detection functions with sharp peaks, sometimes 
accompanied by smaller peaks and plateaus stemming 
from crosstalk effects. A percussiveness criterion [8] is 
computed on the amplitude envelopes to circumvent 
further inspection of irrelevant (non-drum like) compo-
nents. Drum-like onsets are detected in the valid ampli-
tude envelopes using conventional peak picking meth-
ods. Only peaks near the original times t  are regarded as 
candidates. The value of the amplitude envelope’s mag-
nitude is assigned to every onset candidate at its posi-
tion. If this value does not exceed a certain dynamic 
threshold then the onset is not accepted. The threshold 
varies over time according to the amount of energy in a 
larger area surrounding the onsets. Most of the crosstalk 
influences of harmonic sustained instruments as well as 
concurrent percussive instruments can be reduced in this 
step.  

2.4 Refinement & Classification 

Using the information about the probable onset times a 
spectrogram template is extracted for every valid com-
ponent. This decisive refinement step is inspired by [6]. 
It can be achieved by peering through excerpts of the 
original spectrogram X  near the times corresponding to 
the detection function’s highest local maxima. The origi-
nal spectrogram is taken into account to obtain multiple 
observations of the instruments in the time-frequency 
domain (preliminary templates), from which a statisti-
cally meaningful distillate of the actual instrument’s 
spectrogram can be derived. Figure 2 depicts details of 
this process. The example given here shows a snap-shot 
amid the extraction of a snare drum template. The depic-
tion is zoomed to a frequency range covering the first 
200 bins. It can be seen that a suitably smoothed and 
scaled version of the corresponding spectral template is 
incorporated to trim interfering spectral peaks stemming 
from harmonic sustained instruments. This is achieved 
by element-wise minimum computation. The trimming 
operation is repeated for every desired time frame of the 
spectrogram template by moving forward both in X  and 
the template.  
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Figure 2. Details of the template extraction. 

Multiple instances of such templates are extracted at 
different onset times ordered descending by the magni-
tude of the peaks in the corresponding amplitude enve-
lope. This is motivated by the assumption, that the origi-
nal instrument is probably present at those points with 
high amplitude. By virtually stacking all preliminary 
templates on top of each other and again  performing 
element-wise minimum computation it is possible to 
capture the final spectrogram template S  per instrument. 
It turned out, that a relatively small number of template 
observations is sufficient to distillate S . Thus it is not 
necessary to sweep through whole songs in order adapt a 
template as proposed in [6]. The template represents the 
main characteristics of the detected drum instrument. It 
exhibits minimal interference of other instruments play-
ing simultaneously and tends to smooth out spectral 
variance caused by slight playing variations of the 
drums. Figure 3 shows the comparison of an automati-
cally extracted snare template (left) with an excerpt of 
the original spectrogram (right) where the snare sound is 
singly available at the beginning of this particular song. 
Although the single spectrogram was intentionally ex-
cluded from the template extraction process they still 
look very similar.  
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Figure 3. Comparison of spectrogram template 
and actual instrument spectrogram. 



   
 

 

Because of the described characteristics the time-
frequency templates are suited for feature extraction and 
classification of the drum sounds. Despite the fact that a 
time-frequency template offers the possibility to keep 
track of the development of certain spectral characteris-
tics over time (e.g. when the drum sound is decaying) it 
turned out that a smoothed version of the mean spectrum 
over all template frames is distinctive enough for a sepa-
ration into three classes.  

Table 1. Features used for drum classification. 

Feature Name Feature 
dimension 

Critical Band Energy 24 

Spectral Centroid 1 

Spectral Spread 1 

Spectral Skewness 1 

Spectral Kurtosis 1 

Spectral Maximum Position 1 
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Figure 4. Distribution of the three drum classes 
in the KLT feature space. 

The classification itself is based on a linear combination 
of the features given in table 1. The optimal feature com-
bination is thereby predetermined in the sense of linear 
discriminant analysis. This minimization of intra-class 
variance and maximization of inter-class variance is 
achieved by Karhunen Loève Transformation (KLT) [9] 
applied to a normalized feature database extracted from 
a huge collection of single drum sounds with class la-
bels. Figure 4 shows the distribution of the three training 
classes in the resulting two-dimensional KLT space. It 
can be seen that the clusters are clearly separated and the 
number of outliers is small. Mapping of the detected 
drum instruments to the three predefined classes is fi-
nally achieved by simple nearest neighbor classification 
using Euclidean distance measure in the KLT space. 
Concluding the process all valid onsets assigned to the 

detected instruments are stored in a text file using the 
format specified by the MIREX committee. 

3 RESULTS 
The performance assessment of the presented method 
shall be given by brief discussion of the respective 
MIREX results. Within the contest, approximately 50 
files of both live and sequenced music were used as test-
bed. Many genres and various degrees of drum density 
(with regard to instrumentation as well as intensity) are 
encompassed by the files. Three collections of music 
were used, table 2 shows the average durations of the 
sound files.  

Table 2. Information on the distinct test collec-
tions. 

Submitted by Average duration 

Christian Dittmar 30 sec 

Koen Tanghe 30 sec 

Masataka Goto 4 min 
 
To quantify the performance of each algorithm the par-
ticipants agreed to use the F-measure (harmonic mean of 
the recall rate and the precision rate) for each of the 
three drum types, resulting in three F-measure scores 
and their average score. All participating algorithms 
were evaluated against music from each individual audio 
file collection. Subsequently the three collection scores 
were averaged to produce a composite score in which 
the method presented in this document positioned itself 
at rank five. It was outperformed by the winning algo-
rithm submitted by Kazuyoshi Yoshii and three algo-
rithmic variations presented by Koen Tanghe. For fur-
ther detailed information please refer to [11]. It should 
be noted, that the current algorithm (handed in as a win-
dows binary) could score a top result amongst its com-
petitors in the category of processing speed. The dura-
tion of the complete run through all provided test files 
amounts to 673 seconds on an Intel P4 machine with 3 
GHz processor and 3 GB of RAM. Unfortunately, this 
number is not directly comparable to the other partici-
pants due to the usage of distinct computers and frame-
works.  

4 CONCLUSIONS 
The method outlined here proves to yield quite accept-
able performance results in comparison to its competi-
tors. It is the strong belief of the author that positive syn-
ergy effects can be achieved if concepts of the winning 
algorithms in this particular MIREX contest category are 
incorporated into the system. It would, for example, be 
very interesting to see how the template matching prin-
ciple described in [6] works together with the spectro-
gram templates extracted according to this document.  
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