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ABSTRACT

Our algorithm is based on autocorrelation. What distin-
guishes it from other autocorrelation approaches is that we
computes the distribution of lag autocorrelation energy as
a function of phase. This results in a lag-by-phase ma-
trix that compactly represents the repetitive structure of a
musical example. The model is designed to allow meter
analysis of audio files. However it can also be used to
extract information about tempo, as demonstrated in this
MIREX entry. To compute tempo, we enhance a standard
autocorrelation of the signal with the row-wise Shannon
entropy of the phase information in the matrix. This en-
hances the resolution of the autocorrelation, in many cases
allowing for the detection of tempo in musical examples
where autocorrelation does not work.

Keywords: autocorrelation, autocorrelation phase ma-
trix, entropy

1 Introduction

We describe a model that uses autocorrelation as its core,
but that takes advantage of the distribution of energy in
phase space as a method to overcome weaknesses in stan-
dard autocorrelation. To sum, the model works as follows:

• Preprocess audio or MIDI file to yield envelope sam-
pled at or near 1000Hz

• Compute autocorrelation while preserving the distri-
bution of energy in phase space

• Multiply the autocorrelation for each lag by the en-
tropy of the energy in phase space for each lag.

• For meter prediction, integrate phase entropy over a
number of hierarchically-related lags constructed to
match a particular metrical interpretation. Choose
the winning hierarchy

• For tempo induction report the lag value from the
winning set of lags that is closest to a comfortable
tapping rate

• For predicting phase, for the lags in the winning
hierarchy search the autocorrelation phase matrix
bottom-up (from fastest to slowest lag) for the most

salient phase. Use phase energy from faster lags to
constrain the choice at slower lags. Report the se-
lected phase at slowest lag.

The model is described in Sections 1.1 through
1.5. For a longer description of the model see
Eck (2005), available on the author’s website at
http://www.iro.umontreal.ca/˜eckdoug/
publications.html

1.1 Preprocessing

For MIDI files, the onsets can be transformed into spikes
with amplitude proportional to their midi note onset vol-
ume. Alternately MIDI files can simply be rendered as
audio and written to wave files. Stereo audio files are con-
verted to mono by taking the mean of the two channels.
Then files are downsampled to some rate near 1000Hz.
The actual rate is kept variable because it depends on the
original sampling rate. For CD-audio (44.1Khz), we used
a sampling rate of 1050Hz allowing us to downsample by
a factor of 42 from the original file. Best results were
achieved by computing a sum-of-squares envelope over
windows of size 42 with 5 points of overlap. However
for most audio sources a simple decimation and rectifi-
cation works as well. The model was not very sensitive
to changes in sampling rate nor to minor adjustments in
the envelope computation such as substituting RMS (root
mean square) for the sum of squares computation.

One of our goals was to avoid preprocessing as much
as possible, and we succeeded in doing so. However there
is no reason that our model could not be adapted to work
with a multi-band filtering approach similar to, e.g., Kla-
puri et al. (2005); Goto (2001).

1.2 Autocorrelation Phase Matrix

The method of cross-correlation is commonly used to
evaluate whether two signals exhibit common features and
are therefore correlated (Ifeachor and Jervis, 1993). To
perform cross-correlation one computes the sum of the
products of corresponding pairs of two signals. A range of
lags are considered, accounting for potential time delays
between correlated information in the two signals. The
formula for the lagk cross-correlationCk between sig-



nalsx1 andx2 (having lengthN ) is:

Ck(X1, X2) =
1
N

∑
0<n<N−k

x1(n) ∗ x2(n + k)(1)

Autocorrelation is a special case of cross-correlation
wherex1 == x2. There is a strong and somewhat sur-
prising link between autocorrelation and the Fourier trans-
form. Namely the autocorrelationA of a signalX (having
lengthN ) is:

A(X) = ifft(|fft(X)|) (2)

wherefft is the (fast) Fourier transform,ifft is the in-
verse (fast) Fourier transform and|| is the complex mod-
ulus. One advantage of autocorrelation for our purposes
is that it is defined over periods rather than frequencies
(note the application of the IFFT in Equation 2), yielding
better representation of low-frequency information than is
possible with the FFT.

Autocorrelation values for a random signal should be
roughly equal across lags. Spikes in an autocorrelation in-
dicate temporal order in a signal, making it possible to use
autocorrelation to find the periods at which high correla-
tion exists in a signal. As a music example, consider the
autocorrelation for a ChaChaCha from the ISMIR 2004
Tempo Induction contest is shown (Figure 1). The peaks
of the autocorrelation align with the tempo and integer
multiples of the tempo.
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Figure 1: Autocorrelation of a ChaChaCha from the ISMIR
2004 Tempo Induction contest (Albums-CafeParadiso-08.wav).
The dotted vertical line marks the actual tempo of the song (484
msec, 124 bpm).

Unfortunately autocorrelation has been shown in prac-
tice to not work well for many kinds of music. For exam-
ple when a signal lacks strong onset energy, as it might
for voice or smoothly changing musical instruments like
strings, the autocorrelation tends to be flat. See for ex-
ample a song from Manos Xatzidakis from the ISMIR
2004 Tempo Induction in Figure 2. Here the peaks are
less sharp and are not well-aligned with the target tempo.
Note that the y-axis scale of this graph is identical to that
in Figure 1.

One way to address this is to apply the autocorrelation
to a number of band-pass filtered versions of the signal, as
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Figure 2: Autocorrelation of a song by Manos Xatzidakis
from the ISMIR 2004 Tempo Induction contest (15-AudioTrack
15.wav). The dotted vertical line marks the actual tempo of the
song (563 msec, 106.6 bpm). Compare the flatness of the au-
tocorrelation and the lack of alignment between peaks and the
target.

discussed in Section 1.1. In place of multi-band process-
ing we compute the distribution of autocorrelation energy
in phase space. This has a sharpening effect, allowing au-
tocorrelation to be applied to a wider range of signals than
autocorrelation alone without extensive preprocessing.

The autocorrelation phase information for lagl is a
vectorAl:

Al =

bN−l
l c∑

i=0

xli+φ xl(i+1)+φ

l−1

φ=0

(3)

We compute an autocorrelation phase vectorAl for
each lag of interest. In our case the minimum lag of in-
terest was 200ms and the maximum lag of interest was
3999ms. Lags were sampled at 1ms intervals yielding
L = 3800 lags. Equation 3 effectively “wraps” the signal
modulo the lagl question, yielding vectors of differing
lengths (|Al| == l). To simplify later computations we
normalized the length of all vectors by computing a his-
togram estimate. This was achieved by fixing the number
of phase points for all lags atK (K = 50 for all simula-
tions; larger values were tried and yielded similar results
but significantly smaller values resulted in a loss of tempo-
ral resolution) and resampling the variable length vectors
to this fixed length. This process yielded a rectangular
autocorrelation phase matrixP where|P | = [L,K].

As an example of an autocorrelation phase table, con-
sider Figure 3, which shows the rectified normalized sig-
nal from a piano rendition of one of the rhythmic patterns
from Povel and Essens (1985). The pattern was rendered
with a base inter-onset-interval of 300ms. On the left in
Figure 4 the autocorrelation phase matrix is shown. On
the right, the sum of the matrix is shown. It is the standard
autocorrelation.

1.3 Autocorrelation Phase Entropy

As already discussed, is possible to improve significantly
on the performance of autocorrelation by taking advan-
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Pattern 1 Povel & Essens (1985), piano

Figure 3:The rectified normalized signal generated by creating
a piano rendering from a MIDI version of Povel & Essens Pattern
1. Two repetitions of the length-16 nine-event pattern are shown.
See Povel and Essens (1985) for details.

Figure 4:The autocorrelation phase matrix for Povel & Essens
Pattern 1 computed for lags 250Ms through 500ms. The phase
points are shown in terms of relative phase (0, 2π). On the right
it is shown that taking the sum of the matrix by row yields ex-
actly the autocorrelation.

tage of the distribution of energy in the autocorrelation
phase matrix. The idea is that metrically-salient lags will
tend to be have more “spike-like” distribution than non-
metrical lags. Thus even if theautocorrelationis evenly
distributed by lag, thedistribution of autocorrelation en-
ergy in phase spaceshould not be so evenly distributed.
There are at least two possible measures of “spikiness” in
a signal, variance and entropy. We focus here on entropy,
although experiments using variance yielded very similar
results.

Entropy is the amount of “disorder” in a system. Shan-
non entropyH:

H(X) = −
N∑

i=1

X(i)log2[X(i)] (4)

whereX is a probability density. We compute the entropy
for lag l in the autocorrelation phase matrix by as follows:

Asum =
N∑

i=0

Al(i) (5)

Hl = −
N∑

i=0

Al(i)/Asumlog2[Al(i)/Asum] (6)

This entropy value, when multiplied into the autocor-
relation, significantly improves tempo induction. For ex-
ample, in Figure 5 we show the autocorrelation along with
the autocorrelation multiplied by the entropy for the same
Manos Xatzidakis show in in Figure 2. On the bottom ob-
serve how the detrended (1- entropy) information aligns
well with the target lag and its multiples. (Detrending was
done to remove a linear trend that favors short lags. Simu-
lations revealed that performance is only slightly degraded
when detrending is omitted.) Most robust performance
was achieved when autocorrelation and entropy were mul-
tiplied together. This was done by detrending both the au-
tocorrelation and entropy vectors, scaling them both be-
tween 0 and 1 and then multiplying them together.
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Figure 5:Autocorrelation and entropy calculations for the same
Manos Zatzidakis song shown in Figure 2. The top is the auto-
correlation and is identical to Figure 2 except that it is scaled
to [0, 1]. On the bottom is (1 - entropy), scaled to[0, 1] and
detrended. Observe how the entropy spikes align well with the
correct tempo lag of 563ms and with its integer multiples (shown
as vertical dotted lines in both plots.

1.4 Metrical hierarchy selection

We now move away from the autocorrelation phase ma-
trix for the moment and address task of selecting a win-
ning metrical hierarchy. A rough estimate of meter can be
had by simply summing hierarchical combinations of au-
tocorrelation lags. In place of standard autocorrelation we
use the product of autocorrelation and (1 - entropy)AE as
described above. The likelihood of a duple meterMduple

existing at lagl can be estimated using the following sum:

Mduple
l = AE(l) + AE(2l) + AE(4l) + AE(8l) (7)

The likelihood of a triple meter is estimated using the
following sum:

M triple
l = AE(l) + AE(3l) + AE(6l) + AE(12l) (8)

Other candidate meters can be constructed. using sim-
ilar combinations of lags. A winning meter can be chosen
by sampling all reasonable lags (e.g.200ms <= l <=



2000ms) and comparing the resultingM∗
l values. Pro-

vided that the same number of points are used for all can-
didate meters, theseM∗

l values can be compared directly,
allowing for a single winning meter to be selected among
all possible lags and all possible meters. Furthermore,
this search is efficient given that each lag/candidate me-
ter combination requires only a few additions.

1.5 Prediction of tempo

Once a metrical hierarchy is chosen, there are several sim-
ple methods for selecting a winning tempo from among
the winning lags. One option is to pick the lag closest to
a comfortable tapping rate, say 600ms. A second better
option is to multiply the autocorrelation lags by a win-
dow such that more accent is placed on lags near a pre-
ferred tapping rate. The window can be applied either be-
fore or after choosing the hierarchy. If it is applied be-
fore selecting the metrical hierarchy, then the selection
process is biased towards lags in the tapping range. We
tried both approaches; applying the window before selec-
tion yields better results, but only marginally better (on the
order of 1% better performance on the tempo prediction
tasks described below). To avoid adding more parameters
to our model we did not construct our own windowing
function. Instead we used the function (with no changes
to parameters) described in Parncutt (1994): a Gaussian
window centered at 600ms and symmetrical in log-scale
frequency.

2 Contest Results

The model placed 8th out of 13 entries with an overall
score of 0.644 standard deviation. The model predicted at
least one tempo correct for 86.43% of the songs. When
we consider that the winning entry (M. Alonso) got 95%
correct and that G. Peeters got 95.71% correct, our per-
formance can be seen as respectable but certainly not stel-
lar. When both tempos are considered, the model correctly
predicted 53.57% of the songs. This is close in raw per-
centage to that of the winning entry (M. Alonso) value of
55.71%. However C. Uhle reported a score of 59.29%.

We were surprised to see that our model was compet-
itive in terms of runtime. For example, the winning sub-
mission of M. Alonso returned a runtime of 2875 while
ours was 1675. We submitted a highly-unoptimized mat-
lab version. In order to keep runtimes reasonable we set
the parameters of the model rather aggressively. It is pos-
sible that our model could have performed better if we had
allowed it to compute a larger, higher-resolution Phase
Autocorrelation Matrix. In any case, the runtimes are dif-
ficult to compare given that different machines were used
for different models.

As has been discussed via an email list among com-
petitors and organizers, it is difficult to know how close
the models really are in terms of performance. We
are convinced by these results that several models per-
form better than our model—and we congratulate Miguel
Alonso for his winning entry— but it remains unclear how
much better these models are. What is needed is a labeled
dataset having at least one order of magnitude more files.

Lacking that, it would be interesting to run these models
on last years tempo induction contest as a comparison.

3 Conclusions

This paper introduces a novel way to detect metrical struc-
ture in a music and to use meter as an aid in detecting
tempo. Post-contest results reveal that the model fin-
ished well in the middle of the pack among 13 contes-
tants. There are clear ways to improve the algorithm. For
example, multi-band processing could be used as a pre-
processing step and the algorithm could be run on each
band. Also, an online version of the model that makes
predictions on a frame-by-frame basis and integrates evi-
dence leads to better performance. An online version was
implemented after the contest deadline and performs bet-
ter than the submitted version on datasets used in our lab.
However more research in this direction is warranted.

In our view one of the more interesting aspects of this
model is that it provides a relatively compact representa-
tion of temporal structure based on phase. By computing
standard Shannon entropy over phase values, we easily
outperformed autocorrelation at tempo finding. We hope
that more complex analyses will yield still better perfor-
mance and will make it possible to use the Autocorrelation
Phase Matrix in other domains such as score quantization
and beat induction.
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