
SKEFIS – A SYMBOLIC (MIDI) KEY FINDING SYSTEM

Arpi Mardirossian Elaine Chew
Daniel J. Epstein Department of

Industrial and Systems Engineering
University of Southern California

Los Angeles, CA
mardiros@usc.edu

Daniel J. Epstein Department of
Industrial and Systems Engineering
University of Southern California

Los Angeles, CA
echew@usc.edu

SKeFiS is a symbolic (Musical Instrument Digital
Interface) key finding system that incorporates pitch
spelling, key finding, and a cumulative window strategy
for determining key.

After selection of the window to be considered, key
recognition is considered a compound process: one of
first determining the spelling of the pitches from
numeric pitch information (MIDI), then extracting key
from the pitch name information. By combining pitch
spelling and key finding, we not only get the pitch class
number of the tonic of the key, but also its letter name,
and an appropriate key signature for the piece. The
window size (length of music) is determined from the
test data provided by the contest organizers.

Figure 1 depicts the key finding process from MIDI
input to key output, including the length parameter
selection based on the sample test data provided. The
compound process of pitch spelling and key finding is
embedded in the system and outlined by dashed boxes.

FIGURE 1 – SYSTEM DIAGRAM FOR KEY FINDING FROM MIDI

We first describe the selection of the stopping crite-
ria, then we outline the pitch spelling and key finding
algorithms implemented in this system (indicated by
dashed boxes in Figure 1). The stopping criteria, or the
length parameter, selection is based on the sample test
data, and is described in Section 1. The methods for
pitch spelling and key recognition are based on the Spi-
ral Array model [1] and are described in Section 2.

1 LENGTH PARAMETER SELECTION
The rules for the audio and symbolic key finding
competitions for the first Music Information Retrieval
Evaluation exchange (MIREX) are outlined at [5]. In the
implementation of these rules, 30-second segments from
the beginnings of pieces are excerpted for testing by the
contestants. Ninety six MIDI files, a sample
representative of the evaluation corpus, were provided as
a training set to all participants. The scoring scheme
proposed was that a correct answer would get one point,
an answer that was the perfect fifth of the correct one
would get 0.5 points, and the relative major/minor and
parallel major/minor errors would get 0.3 and 0.2 points
respectively.

Given that 30 seconds of music are provided for
each piece, and that our key finding method (the CEG
algorithm) has been shown to require very little
information to determine key [4], we decided to use only
a subset of the 30 seconds of music that is provided.
The question then arose as to how short or long of a
segment did one need to determine key? In SkeFiS, our
stopping criterion is based on selecting one optimal
length for all pieces to be determined from the training
data provided. We ran the CEG algorithm on truncated
excerpts of the sample test files ranging in length from
0.1 through 30 seconds. We then compared the results
against the ground truth to determine the score for each
run. The percentage scores are plotted against the
truncated segment lengths in Figure 2. The optimal
segment length, having the highest score of 83.13%, was
determined to be for segments that were 27.9, 28.0, and
28.1 seconds long. We chose to use 28.0-second
segments.

FIGURE 2 – GRAPH OF KEY FINDING SCORE VS LENGTH

2 KEY RECOGNITION
The pitch spelling and key recognition algorithms im-
plemented in SkeFiS are based on the Spiral Array
model [1], a mathematical model for tonality that uses
spatial proximity to represent perceived closeness. The
Spiral Array model consists of several nested spirals,

Truncate

Spell

Sample
test
data

Find Key

Score

Highest-
scoring
length

Truncate

Spell

MIDI

Key

Find Key

Length parameter selection

MIDI key finding

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 3 6 9 12 15 18 21 24 27 30

Best score,
83%, at 28s.

including representations for pitches and keys. Within
this model, any collection of notes maps to pitch posi-
tions in the Spiral Array, and by taking a weighted av-
erage of these pitch representations, we can generate a
center of effect (c.e.) that summarizes its tonal informa-
tion. The key of the pitch collection is then determined
by a nearest neighbor search for the closest key presenta-
tion. This method has been described as the Center of
Effect Generator (CEG) algorithm in [1] and [4].

In western tonal music several pitches are
approximated by the same frequency (these pitches are
said to be enharmonically equivalent). In a MIDI file,
enharmonically equivalent pitches are represented by the
same numerical value. In order to use the CEG
algorithm, we needed to first convert MIDI pitch
numbers to contextually correct pitch names. Real-time
pitch spelling algorithms using the Spiral Array and
various contextual windows have been proposed by
Chew and Chen [2],[3]. The method implemented in
SkeFiS is the sliding window algorithm detailed in [2].
This method incrementally generates pitch spellings for
note events (note by note) based on tonal contexts
derived from a short history window (five beats). We
use the history window to generate a c.e. that acts as a
proxy for the key. The algorithm maps each numeric
pitch number to its plausible pitch names on the Spiral
Array, and selects the best match through a nearest-
neighbor search.

The input to the CEG key-finding algorithm is the
pitch names derived from the above pitch spelling algo-
rithm. At this point, it is possible to calculate the c.e.
for the segment of music by mapping the pitch names
in all time slices in the segment to their positions in the
Spiral Array, and generating a point that is the compos-
ite sum of the pitch positions weighted by the number
of “hits”. Since keys are also defined as points in the
same space, it is then straightforward to compute the
distance between this c.e. and all key representations to
determine which key is closest to the c.e.

3 EVALUATION RESULTS
The evaluation was performed using 1252 MIDI files,
and the results reported in [5]. Table 2 records the
evaluation results for our system.
TABLE 1 – RESULTS OBTAINED BY SKEFIS

System and algorithms SKEFIS

Rank 5

Total score 934

Percentage score 74.6%

Correct keys 799

Perfect 5th errors 210

Relative major/minor errors 80

Parallel major/minor errors 30

Other errors 133

Runtime (s) 471

Machine
OS:CentOS; Processor: Dual
AMD Opteron 64 1.6Ghz;
RAM:4GB

4 SYSTEM COMPARISONS
Five groups participated in the MIREX 2005 symbolic
key finding contest. They included submissions from
A. Ehmann, A. Mardirossian & E. Chew, D. Rizo & J.
Iñesta, D. Temperley, and Y. Zhu. This section is a
comparison of the submitted systems. We are only able
to discuss three of the systems as the other two, by A.
Ehmann and Y. Zhu, were not made available at the
time of writing of this abstract. We base our compari-
sons on the preliminary abstracts submitted by Rizo &
Iñesta, and Temperley (the first parts of [6] and [7] re-
spectively).

TABLE 2 – COMPARISONS OF SUBMITTED ALGORITHMS

Mardirossian
& Chew

Rizo Temperley

Representatio
n

Mapping of keys
on spiral

Coding
scheme of

trees
Segments of

pieces

Key
Recognition

Method

CEG (nearest
neighbor)

applied to first
28s of music

Post-order
traversal of
tree to rank

all keys

Bayesian
probability

with dynamic
programming

Key
Templates

Key
representations

in the Spiral
Array

Rating
model

Koska-Payne
profile

Scope of data
inspected First 28 seconds All notes

Segments of
of 1.2

seconds.

Query
CE, sum of pitch

positions
weighted by

durations

Tree
representati
on of music

Duration
profile for

each segment

Key
Selection
Criteria

Select key of the
first 28 seconds

Select key
with highest

ranking

Perform
probabilistic
DP, pick label
for first 1.2s

Table 1 outlines the details of the algorithms for
which an abstract was made available. Each of these al-
gorithms is very different in its approach to key finding.
Our system has been described in Sections 1 and 2.

The algorithm by Rizo & Iñesta creates a tree repre-
sentation of polyphonic music. The search for the main
key of the piece is based on a post-order traversal of the
tree. Each node incorporates a rating of the likelihood of
its pitch collections’ membership in a key. Once the
children have the ranks for all keys calculated, their re-
sults are combined to establish a ranking for each key at
the parent level. The root node of the tree contains a list
of keys, ordered by rank. The highest ranked key is se-
lected as the answer.

Temperley’s algorithm begins by dividing a piece
into 1.2-second segments. The model then searches for
the optimal “key structure”, where a key structure is a
labeling of each segment with a key using a probabilis-
tic dynamic programming method that penalizes key
changes, and maximizes the probability of a given key
given the observed information. The probabilities are
computed using key profiles determined from the
Koska-Payne corpus. After the optimal labelling of all
segments is computed, the main key of the piece is de-
termined by choosing the key of the first segment.

5 DISCUSSION AND CONCLUSION
Although it is possible that the spelling step in SkeFiS
may have introduced some error (neither of the other two
system descriptions included any spelling, considering
only numeric pitch classes), we believe that the
disadvantage of our system derives primarily from the
naïve use of a cumulative window for key recognition.

Both Temperley’s and Rizo & Iñesta’s contribution
provided essentially a parsing of the entire musical
excerpt to derive a reasonable key label for the sample.
Rizo & Iñesta built a tree structure for explaining the
tonal groupings in a polyphonic sample, while
Temperley’s built a different kind of tree (in a dynamic
programming algorithm) to create the optimal labelling
of the passage. We hypothesize that Temperley’s
winning approach is due in part to his use of Bayesian
reasoning, based on pattern matching using key profiles
learned from the Kostka-Payne corpus, in the dynamic
programming algorithm.

The results of the competition show that the cumula-
tive window approach is far from optimal, even for ex-
cerpts as short as 30 seconds, and that there is room for
improvement in the application of a key recognition al-
gorithm such as the CEG to the analysis of real data.
For example, the dynamic programming approach de-
scribed by Temperley can be set up so as to optimize
the likelihood of keys as measured by distances in the
Spiral Array; or, key rankings in each node in Rizo &
Iñesta’s tree-based approach can be computed using dis-
tances returned by the CEG method.

6 ACKNOWLEDGEMENTS
We thank the MIREX team led by Stephen Downie, and
in particular, Andreas Ehmann, Emmanuel Vincent, and
Kris West for amassing the database and running the
key finding evaluations.

This research has been funded in part by a National
Science Foundation (NSF) Information Technology Re-
search Grant No. 0219912, and made use of the shared
facilities at the Integrated Media Systems Center, an
NSF Engineering Research Center Cooperative Agree-
ment No. EEC-9529152. Any opinions, findings, and
conclusions or recommendations expressed in this mate-
rial are those of the authors, and do not necessarily re-
flect those of NSF.

Keywords: polyphonic MIDI key finding, evaluation.

REFERENCES
[1] E. Chew. “Towards a Mathematical Model of

Tonality”, Doctoral dissertation, Department of
Operations Research, Massachusetts Institute of
Technology, 2000.

[2] E. Chew, and Y.-C. Chen. “Mapping MIDI to the
Spiral Array: Disambiguating Pitch Spellings”,
H.K. Bhargava and Nong Ye (Eds.), Computational
Modeling and Problem Solving in the Networked
World, Proceedings of the 8th INFORMS Computer
Society Conference, 2002.

[3] E. Chew, and Y.-C. Chen. “Real-Time Spelling
Using the Spiral Array”, Computer Music Journal,
2005.

[4] E. Chew. “Modeling Tonality: Applications to
Music Cognition”, Proceedings of the 23rd Annual
Meeting of the Cognitive Science Society, 2001.

[5] MIREX 2005 - The 1st Music Information Retrieval
Evaluation eXchange . Url: www.music-
ir.org/mirexwiki/index.php/Main_Page. Contest
results url: www.music-ir.org/evaluation/mirex-
results/sym-key/index.html.

[6] Rizo, D., and Iñesta, J., “Tree Symbolic Music
Representation for Key Finding,” Abstract of the
Music Information Retrieval Evaluation Exchange,
2005.

[7] Temperley, D., “A Bayesian Key Finding Model,”
Abstract of the Music Information Retrieval
Evaluation Exchange, 2005.

