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ABSTRACT 
The extended abstract presents our approach to extrac-
tion of melody from audio recordings, based on timbral 
similarity of melodic fragments. The algorithm was sub-
mitted to MIREX 2005 competition and scored 5th 
among 9 submissions, with an average score of 59.18% 
correctly transcribed voiced and unvoiced portions. 
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1 INTRODUCTION 
Our approach to melody extraction is centered around 
finding audio fragments with well-defined melody and 
clustering these fragments based on their pitch, loudness 
and timbral similarity. Melodic lines are then grown out 
of the clustered fragments. The algorithm is composed of 
several consecutive steps. Each step integrates informa-
tion from previous ones into a higher-level representa-
tion, resulting in a set of melodic lines, out of which the 
dominant one is picked as the melody. The steps are: 

1. finding predominant pitches in short regions of 
the audio signal; 

2. forming melodic fragments by tracking and merg-
ing continuous pitch contours; 

3. finding fragments with well defined melody (me-
lodic seeds), calculating their similarity based on 
pitch, loudness and timbral features, and cluster-
ing seeds based on their similarity matrix. Each 
cluster is taken to represent one melodic line; 

4. making a directed acyclic graph through frag-
ments between each pair of seeds, and calculating 
the least costly path, based on time-frequency 
proximity and fragment similarity; 

5. forming melodic lines as the least costly paths 
through all the seeds within each cluster. The line 
in the dominant cluster is picked as the result. 

2 PREDOMINANT PITCH ESTIMATION 
The procedure has been described in more detail in our 
DAFX-04 paper [1]. To sum up, we first use SMS analy-
sis [2] to separate the slowly varying sinusoidal compo-
nents of the signal from the rest (transients and noise). 
The obtained sinusoidal components are subjected to a 
psychoacoustic masking model that eliminates the com-
ponents masked by stronger ones. We then estimate the 
predominant pitches in short (10 ms) segments of the 

signal. Our pitch estimating procedure is based on the 
PreFEst approach introduced by Goto [3], with some 
modifications. It uses EM to iteratively estimate domi-
nant pitches in segments of processed audio. 

3 FORMING MELODIC FRAGMENTS 
Melodic fragments are formed by tracking the dominant 
pitches through time and thereby forming fragments with 
continuous pitch contours (loudness or other factors are 
not taken into consideration). The first part of the proce-
dure is similar to pitch salience calculation as described 
by Goto [3]. For each pitch with weight greater than a 
dynamically adjusted threshold, salience is calculated 
according to its dominance in a 50 ms look-ahead win-
dow. The procedure tolerates pitch deviations and indi-
vidual noisy frames that might corrupt pitch tracks by 
looking at the contents of the entire 50 ms window. After 
saliences are calculated, melodic fragments are formed 
by continuously tracking the dominant salient peaks and 
producing fragments along the way. The final result of 
this simple procedure is an initial set of melodic frag-
ments, which may overlap in time, are at least 30 ms long 
and may have slowly varying pitches. Parameters of each 
fragment are its start and end time, its time-varying pitch 
and its time-varying loudness.  

Due to various interfering noises or strong vibrato 
fragments belonging to individual tones may be found in 
several smaller (broken) pieces. A mending procedure is 
therefore performed to merge neighbouring broken 
fragments with similar pitch and loudness into larger 
units. To resolve ambiguities when several competing 
options are available for fragment merging, small di-
rected acyclic graphs (DAGs) are formed in ambiguous 
sections. Vertices of DAGs represent fragments, while 
edges and their costs are determined on the basis of 
fragment proximity in time, frequency, EM weight and 
loudness. Fragments are merged by finding shortest 
paths in these graphs. 

Finally, weak fragments (length less than 50 ms or 
low loudness) are removed and long fragments broken at 
strong onsets and offsets to prevent individual fragments 
to extend over different melodic lines. 

4 CLUSTERING MELODIC SEEDS 
We assume that a melodic line is composed of events 
(melodic fragments) which are similar in pitch, loudness 
and timbre. Before forming melodic lines, we therefore 
cluster melodic fragments into several clusters based on 
their similarity according to features describing pitch, 



   
 

 

loudness and timbre. Different clusters are assumed to 
represent different melodic lines. As timbral features may 
not be reliably calculated for short or quiet fragments, we 
first pick a set of fragments with well-defined melody, 
called melodic seeds. These represent the basis for for-
mation of melodic lines. Melodic seeds are clustered and 
melodic lines grown from them by adjoining neighbour-
ing fragments to each line.  

4.1 Finding melodic seeds 

Melodic seeds are extracted from the set of all me-
lodic fragments according to their relative loudness and 
mean loudness. We define relative loudness as: 
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where lf(t) is loudness of fragment f at time t, wf(t) weight 
of the tone model that originated the fragment and L(t) 
overall loudness of the signal. Relative loudness grows 
with fragment length, loudness and pitch strength.  

Melodic seeds are picked by first using Grubbs' test 
for eliminating outliers in relative loudness and then 
picking fragments with relative loudness above one 
standard deviation from the mean of fragments without 
outliers. The obtained set of fragments is subjected to 
another sieve, which removes all fragments with loud-
ness smaller than one standard deviation below the mean 
loudness of fragments. We call fragments in the result-
ing set melodic seeds, as they represent regions with 
strongly defined melody. 

4.2 Calculating seed similarity 

To calculate fragment similarity, we trained a feed-
foward neural network on a set of examples from 
ISMIR2004 melody extraction competition. Inputs of 
the network consist of a set of 20 features describing 

musical properties of fragments and include: 
• mean frequency; 
• average weight of the tone model that originated 

the fragment, as calculated by the EM procedure; 
• mean loudness; 
• percentages of fragment length covered by frag-

ments an octave above and below; 
• ratio of first three even to odd harmonics; 
• spectral centroid and bandwidth of partials be-

longing to the fragment; 
• spectral irregularity and ratio of even to all har-

monics [4]; 
• several cepstral coefficients; 
• tristimulus and inharmonicity [4]. 
These features were picked out of a larger set of fea-

tures in a training/evaluation procedure for the network. 
The trained network is used to calculate similarity be-
tween all melodic seeds and the obtained similarity ma-
trix is used as the basis for clustering.  

4.3 Clustering 

Clustering is performed on seed similarity matrix with 
kmeans algorithm. Melodic seeds are clustered into two 
to five clusters. The optimal number of clusters is then 
picked according to the silhouette criterion. If between-
cluster diversity of the optimal solution is not large 
enough, all seeds are put into a single cluster. Finally, 
seeds that lie on cluster borders are assigned to all the 
neighbouring clusters as well, so that one seed may be-
long to several clusters. The results of the procedure are 
illustrated in parts A and B of Figure 1. 

5 FORMING MELODIC LINES 
Melodic seeds in different clusters represent the founda-
tion for formation of melodic lines (one line per cluster). 

Figure 1. Steps in finding the melodic line; A: finding melodic fragments, B: melodic seeds are extracted and 
clustered, C: directed acyclic graphs are formed between closely spaced seeds, D: DAGs are formed and best paths 
found between each linked pair of seeds, E: best paths are found between DAGs of seeds, F: best cluster is found 
and melodic line extracted (ground truth on the plot is offset from extracted melody for clarity) 



   
 

 

These are formed by adjoining melodic fragments to 
seeds and thereby growing individual clusters. Finally, 
the dominant cluster is picked and its melodic line pro-
nounced as the winner. The procedure can be explained 
in several steps, illustrated in Figure 1 and described in 
the following subsections 

5.1  Grouping melodic seeds 

Melodic seeds within each cluster are linked into di-
rected acyclic graphs (DAGs) according to seed prox-
imity in time and frequency. Graphs represent groups of 
melodic seeds that are close in time, frequency and tim-
bral similarity, as all vertices in a graph belong to the 
same cluster. Such groups form a rough approximation of 
larger melodic regions within a piece (see Figure 1C). 

5.2 Adding fragments to seed groups 

After groups of melodic seeds are formed, each linked 
pair of seeds within each group is joined with a new di-
rected acyclic graph through all the melodic fragments 
between the two seeds. Graph edges are formed accord-
ing to time-frequency proximity of fragments. Costs of 
edges are calculated according to a linear combination 
of: 

• frequency difference between nodes; 
• loudness difference between nodes; 
• time gap between nodes; 
• penalty for interrupting a continuous sequence of 

fragments; 
• similarity (as calculated by the FF network) to all 

melodic seeds within the seed group; 
• similarity between the two nodes. 
The features and their respective weights within the 

linear combination were obtained by optimizing the en-
tire melody extraction procedure with a genetic algo-
rithm on the ISMIR 2004 dataset.  

Shortest path algorithm is then applied to the DAG 
between a pair of melodic seeds to find the optimal path 
through fragments between the two seeds and fragments 
on the path added to the seed group. This results in a 
finer definition of melody between melodic seeds and is 
illustrated in Figure 1D. 

5.3 Finding best paths within seed groups 

Cost of the shortest path between two melodic seeds is 
taken as the cost of the edge between the two seeds in the 
DAG defining the group that the two seeds belong to 
(Figure 1C). Shortest path algorithm is again applied to 
each seed group to remove the ambiguities that may arise 
due to competing paths within groups. This results in a 
clear definition of melody within each group of melodic 
seeds (see Figure 1E). 

5.4 Picking the dominant cluster 

Finally, we search for the dominant cluster of fragments 
to represent the main melodic line. Several criteria, in-
cluding fragment loudness, coverage of melody over time 

and cluster consistency are involved in the search proce-
dure and the cluster with the highest score is taken to 
represent the main melody, which is decoded from DAGs 
belonging to the cluster (Figure 1F).  

6 PERFORMANCE 
The presented algorithm was submitted to MIREX 

2005 competition and scored 5th among 9 submissions, 
with an average score of 59.2% correctly transcribed 
voiced and unvoiced portions. Table 1 lists results for 
our algorithm (other numbers and results of other ap-
proaches are given on http://www.music-ir.org  
/evaluation/mirex-results/audio-melody/index.html).  

 

Table 1. Results for our algorithm. Description of 
individual numbers is given on MIREX results 
web page (see URL above). 

Voicing 
Detection 

Voicing 
FP 

Raw Pitch 
Acc.  

Chroma 
Acc. 

Overall 
Accuracy  

71.8%  32.4%  59.8%  66.7%  59.2%  

 
As identity of individual incipits used for evaluation 

is not known, it is difficult to assess where the perform-
ance was at its worst or best.  

Overall, scores and the types of errors are consistent 
with our previous tests. We do not perform any kind of 
explicit voicing detection when forming melodic frag-
ments. Whatever area is covered by any of the found 
melodic lines (these consist of melodic fragments) is 
considered as voiced. It's apparent that our entire frag-
ment finding procedure does not perform very well, as 
our voicing detection scores are amongst the worst of all 
approaches that actually consider voiced/unvoiced de-
tection, lagging significantly behind the top scores. Our 
fragment finding algorithm has already been identified 
as the main culprit for poor performance when we tested 
our approach on the ISMIR 2004 melody extraction 
dataset augmented with three incipits made available to 
MIREX 2005 contest participants. The average per-
formance on this set was 71.8%, which is somewhat 
higher, due to several relatively simple synthesized in-
cipits. In that set, our fragment finding procedure cor-
rectly found only 77% of fragments belonging to the 
melody (23% of melody was not covered by fragments 
and therefore missing already at this stage of the algo-
rithm). In some cases, the percentage of melodic line 
covered within a ±25 cent window only reached 50% - 
i.e. with Madonna's Frozen, shown also in Figure 2. 
Masking and vibrato, resulting in poor or inexistent fre-
quency estimates are the main sources of fragment find-
ing errors, poor time resolution (we use 100 ms windows 
in SMS analysis) another – if we increase the error tol-
erance to 50 a cent window, coverage of melodic line in 
Madonna's Frozen grows to 70%. We are considering 
replacing the SMS-EM approach with some other tech-
nique to improve on fragment finding performance, as 



   
 

 

further steps in our algorithm can not remedy the errors 
made in this stage. 

On the other hand, we are quite happy with our ap-
proach to forming melodic lines from fragments by clus-
tering melodic seeds and growing lines out of these 
seeds. If we disregard octave errors, which may be prob-
lematic (i.e. in piece no 13, where the whole melody was 
misjudged by an octave), the raw chroma accuracy score 
is very close to the voicing estimate, showing that out of 
the found fragments, most were correctly placed into the 
main or other melodic lines. It may occur that in pieces 
where melody varies a lot in pitch and/or timbre, frag-
ments belonging to the main melodic line get clustered 
into several clusters, but such cases are rare. If they do 
occur, this results in a situation where the melody is bro-
ken into several melodic lines and the final result (one 
melodic line) therefore only contains some parts of mel-
ody, although other parts were also discovered.  

Overall, we shall concentrate our further work pri-
marily on improvements of the fragment discovery algo-
rithm, as this appears to be the weakest link in our chain. 
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Figure 2. Bad with Madonna: poor fragment finding on Madonna's Frozen. In the shown excerpt, only 40% of 
the ground truth is covered by found melodic fragments within a ±25 cent window (ground truth ± 25 cents). Such 
errors cannot be improved in later stages of our approach. 


