
String Matching and Geometric Algorithm for Melodic Similarity

Kjell Lemstr öm, Niko Mikkil ä, Veli Mäkinen and Esko Ukkonen
C-BRAHMS Group, Department of Computer Science

P.O.Box 68 (Gustaf Ḧallströmin katu 2b)
FIN-00014 University of Helsinki, FINLAND

{klemstro,mikkila,vmakinen,ukkonen}@cs.helsinki.fi

Keywords: MIREX’05, Melodic Similarity, String
Matching, Geometric Matching

1 INTRODUCTION

This abstract gives an overview on two algorithms, devel-
oped earlier in the C-BRAHMS group (Lemström et al.
(2003)), that took part in the MIREX’05 melodic similar-
ity contest. Given two excerpts of symbolically encoded
music, thequery patternand thetarget music, the task of
both these algorithms is to find musically relevant occur-
rences of the query pattern within the target music.

The first algorithm (Lemstr̈om and Ukkonen (2000))
is based on the string matching framework. It is suit-
able for assessing the similarity of monophonic (pitch) se-
quences. The similarity (or actually distance) between the
query and its occurrence is expressed by a number stating
the minimum of required editing operations to convert the
query sequence into that of the found occurrence.

The other algorithm (Ukkonen et al. (2003)), based on
geometric matching, is somewhat more complicated but
also more flexible: either (or both) of the sequences may
be polyphonic. Using the piano-roll representation, the
intuitive idea is to slide the vertical bar-lines representing
the query over the piano-roll representation of target and
to find the position that gives the maximal common shared
time (maximal overlapping of the two sets of vertical bar-
lines).

Both the algorithms are computationally very effi-
cient. The former can be calculated in timeO(mn) by
using dynamic programming, the latter inO(mn log m).
Herem andn denote the number of musical events (notes)
in query and target, respectively. In the following two
sections we present the fundamental parts of these algo-
rithms. We refer the reader to (Lemström and Ukkonen
(2000); Ukkonen et al. (2003)) for more details.

2 String Matching Algorithm

Basing the similarity measure on pitch values, one has two
possibilities. Either to use theabsoluteor therelativeval-
ues (i.e. intervals between consecutive pitches). The lat-
ter representation has the advantage over the first, that it
also finds transposed occurrences of the query. On the
other hand, substituting one absolute pitch value corre-
sponds to two substitutions in the relative representation

(see e.g. Lemström and Ukkonen (2000)). Thus, in the
case of several individual erroneous notes, the user defined
error threshold is exceeded much earlier by an algorithm
based on relative encoding than it would be by one based
on absolute encoding.

The idea in our first candidate is to try to capture the
advantages of both these encodings. It always chooses
which out of the two encodings would locally give the best
match. Let us denote the query and the target by strings
A = a1, . . . , am andB = b1 . . . bn, respectively, where
eachai(1 ≤ i ≤ m) andbj(1 ≤ j ≤ n) are taken from
an alphabet over pitch values. Our algorithm evaluates the
following simple recurrence.

d0j = 0 (∀j, 0 ≤ j ≤ n)

dij = min


di−1,j + 1
di,j−1 + 1
di−1,j−1 + (if ai = bj or

ai − ai−1 = bj − bj−1

then0 else1).

Evaluating the recurrence above corresponds to calcu-
lating all the values of anm × n-sized table(dij). Any
valuedmj (value at the bottom row of(dij)) corresponds
to the smallest possible distance between the query and
any of the substrings of target that ends at positionj.

Note that the only refinement to the conventional algo-
rithm (finding only absolute or transposed occurrences), is
the last possibility for the minimum operation. Note also
that (strictly speaking) our algorithm is not transposition
invariant.

3 Geometric Algorithm

Our primary candidate is based on a geometric sweepline
technique. As described above, the intuition behind this
algorithm is to slide the vertical bar-lines representing the
query over the piano-roll representation of target and to
find the position that gives the maximal common shared
time (see Figures 1 and 2 below).

To this end, the piano-roll representation of target mu-
sic is given to the algorithm as lexicographically ordered
turning points (starting and ending points of each note).
The notes of the query are ordered by their starting points.

The algorithm first populates a priority queue with two
translation vectors for each turning point in the pattern. In
the beginning the vectors point to first starting and ending



1 2 3 4 5 6 7 8

60

62

64

66

68

70

72

pitch

time

Figure 1: Query in piano-roll representation.

2 3 4

pitch

time

Figure 2: Target in piano-roll representation. The first
twelve notes of the query in Figure 1 are shown by shad-
ing in a translated position such that the total length of the
overlapping is six quarter notes.

point in the target. After this initialization, the algorithm
loops through all possible translation vectors between the
query and the target. At each iteration the first vector in
lexicographic order is retrieved from the queue and re-
placed by the next corresponding vector (a vector for the
same turning point in the query) that has not yet been in-
serted into the queue.

When the algorithm iterates over translation vectors, it
counts common time between the query and the target on
each vertical translation level to ensure transposition in-
variance. Common time is counted by using a linear slope
that the translation vectors adjust, and the maximal over-
lapping is simply checked for at each iteration. Finally,
normalizing the maximal overlapping by the combined
length of query or target notes (whichever is smaller) re-
sults in a value that expresses the similarity of the query
and the target.

4 Results

The goal in the MIREX’05 Symbolic Melodic Similarity
contest was to retrieve the most similar incipits from the
RISM A/II collection, given one of the incipits as a query.
The dataset contained 558 MusicXML files of the incipits
from the RISM collection. 11 incipits of this collection
were chosen as queries. For further information about the
contest setting and evaluation, we refer to Typke (2005).

The results for the seven contestants are given in Ta-
ble 1. For each contestant, five figures were drawn from
the experiments; two of them based on precision, two on
recall and one related to the running time. The scores were
averaged over the 11 queries. In the table we have empha-
sized the best three contestants in each of the five cate-
gories. Our submissions are marked with a bold typeface.
DP refers to the string matching algorithm and P3 to the
geometric algorithm.

When considering recall, three contestants outper-
formed the rest. The average dynamic recall and normal-
ized recall for the first three was more than 60 % and 50
%, respectively. For the remaining four, including our al-
gorithms, the figures were in the range of 50 to 60 % and
40 to 50 %, respectively.

As regards to precision, Grachten, Arcos &
Mántaras’s method outperformed the others: it was the
only one having average precision over 50 %. Three
more contestant crossed the border of 40 %, including our
sweepline technique.

Looking at the running times, our algorithms outper-
formed the others by an order of the magnitude. That is
an issue to be taken into account when dealing with very
large databases (recall also that our geometric sweepline
method works as well with polyphonic as with mono-
phonic music). Moreover, as the reported running times
include times spent for evaluation of the results, the real
relative difference is even larger than the reported (it has
been announced that the evaluation took some 4 seconds,
that is approximately 40 % of the reported times of our al-
gorithms while, for instance, only 5 % of that of Grachten,
Arcos & Mántaras’s method).

The relatively large difference in running times be-
tween our algorithms and the others can be partly ex-
plained by more efficient MIDI parsing and some opti-
mized data structures. As the incipits were very short and
there were a lot of them, initializing a heavy MIDI parser
and the algorithm for each of them separately could easily
waste a lot of time. Still, the main reason for the difference
is most likely the fact that our algorithms were designed
with much larger data sets in mind. It should also be noted
that in practice, with long target music and short queries,
the geometric algorithm is slower than the string matching
algorithm. However, the string matching algorithm does
not work well with polyphonic music, which is harmful
in some applications. Both algorithms were implemented
completely in Java for compatibility reasons, but a faster
C version of the geometric algorithm is also available.



Rank Participant ADR NR Average
Precision

Precision at
N documents

Input Runtime (s) Machine

1 Grachten, Arcos &
Mántaras

65.98% 55.24% 51.72% 44.33% MIDI 80.174 * B0

2 Orio, N. 64.96% 53.35% 42.96% 39.86% XML 24.610 B4

3 Suyoto &
Uitdenbogerd

64.18% 51.79% 40.42% 41.72% MIDI 48.133 B3

4 Typke, Wiering &
Veltkamp

57.09% 48.17% 35.64% 33.46% MIDI 51.240 B4

5 Lemström,
Mikkil ä, Mäkinen
& Ukkonen (P3)

55.82% 46.56% 41.40% 39.18% MIDI 10.007 * B0

6 Lemström,
Mikkil ä, Mäkinen
& Ukkonen (DP)

54.27% 47.26% 39.91% 36.20% MIDI 10.106 * B0

7 Frieler &
Müllensiefen

51.81% 45.10% 33.93% 33.71% MIDI 54.593 B4

Table 1: 2005 MIREX Contest Results - Symbolic Melodic Similarity
ADR is Average Dynamic Recall and NR is Normalized Recall at group boundaries. For our algorithms, DP refers to the
string matching algorithm and P3 to the geometric algorithm. All the machines B0, B3 and B4 had the same hardware
and software specifications.
Note * : These runs were executed in M2K environment, and thus the runtime includes evaluation time.

References

K. Lemstr̈om, V. Mäkinen, A. Pienim̈aki, Mika
Turkia, and E. Ukkonen. The C-BRAHMS
project. In Proceedings of the ISMIR’03 4th Inter-
national Conference on Music Information Retrieval,
pages 237–238, Baltimore, October 2003. URL
http://www.cs.helsinki.fi/group/
cbrahms/ .

K. Lemstr̈om and E. Ukkonen. Including interval en-
coding into edit distance based music comparison and
retrieval. In Proceedings of the AISB’00 Symposium
on Creative & Cultural Aspects and Applications of AI
& Cognitive Science, pages 53–60, Birmingham, April
2000.

R. Typke. Symbolic melodic similarity. In MIREXWiki,
2005. URLhttp://www.music-ir.org/
mirexwiki/index.php/
Symbolic Melodic Similarity .

E. Ukkonen, K. Lemstr̈om, and V. M̈akinen. Sweepline
the music! InComputer Science in Perspective — Es-
says dedicated to Thomas Ottmann, volume 2598 of
Lecture Notes in Computer Science, pages 330–342.
Springer-Verlag, 2003.


