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ABSTRACT

Many melody transcription systems rely on a core of
rule-based analysis that assumes a specific audio struc-
ture, namely that a musical pitch is realized as a set of
harmonics of a particular fundamental. This assumption
is strongly grounded in musical acoustics, but it is not
strictly necessary. In this abstract, we present a system
that learns to infer the correct melody label based only
on training with labeled examples. Our algorithm per-
forms dominant melodic note classification via a Support
Vector Machine classifier trained directly from audio fea-
ture data. As a result, the proposed system may be easily
generalized to learn many melodic structures or trained
specifically for a given genre.
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1 SYSTEM DESCRIPTION

The basic flow of our transcription system is as follows:
First, the input audio waveform is transformed into a nor-
malized short-time magnitude spectrum feature represen-
tation. A Support Vector Machine (SVM) trained on real
multi-instrument recordings and synthesized MIDI au-
dio classifies each frame as having a particular dominant
pitch, quantized to the semitone level. Finally, energy
thresholding is used to perform voiced/unvoiced melody
segmentation. Each of these steps is described in more
detail below:

1.1 Acoustic Features

The input audio waveform is downsampled to 8 kHz and
converted to the short-time Fourier transform (STFT) us-
ing anN = 1024 point Discrete Fourier Transforms (i.e.
128 ms), anN -point Hanning window, and a 944 point
overlap of adjacent windows (for a 10 ms grid). Only
the bins corresponding to frequencies below 2 kHz (i.e.
the first 256 bins) are used. To improve generalization
across different instrument timbres and contexts, the mag-
nitude of the STFT is normalized within each time frame
to achieve zero mean and unit variance over a 71-frame
local frequency window, the idea being to remove some
of the influence due to different instrument timbres and
contexts in train and test data.

1.2 Support Vector Machine

Labeled audio feature vectors are used to train an SVM
with a class label for each note distinguished by the sys-
tem. The WEKA implementation of Platt’s Polynomial
Sequential Minimal Optimization (SMO) SVM algorithm
was used to map the frequency domain audio features to
the MIDI note-number classes (Witten and Frank, 2000;
Platt, 1998). The default learning parameter values (C =
1, epsilon =10−12, tolerance parameter =103) are used
to train the classifier. Each audio frame was represented
by a 256-element input vector, with sixty potential output
classes spanning the five-octave range from G2 to F#7 for
N-way classification.

1.3 Training Data

1.3.1 Multi-track Recordings

A set of multi-track recordings was obtained from gen-
res such as jazz, pop, R&B, and rock. For each song,
the fundamental frequency of the melody track was es-
timated using the YIN fundamental frequency estimator
(de Cheveigne and Kawahara, 2002). Fundamental fre-
quency predictions were calculated at 10 ms steps and
limited to the range of 100 to 1000 Hz. Only frames with
periodicity of at least 95% were used as training exam-
ples. To align the acapella recordings to the full ensemble
recordings, we performed Dynamic Time Warp (DTW)
alignment between STFT representations of each signal,
along the lines of the procedure described in Turetsky and
Ellis (2003). Target labels were assigned by calculating
the closest MIDI note number to the monophonic predic-
tion at the times corresponding to the STFT frames.

1.3.2 MIDI Files

Our MIDI training data is composed of frequently down-
loaded pop songs from www.findmidis.com. The training
files were converted from the standard MIDI file format
to mono audio files (.WAV) with a sampling rate of 8 kHz
using the MIDI synthesizer in Apple’s iTunes. The MIDI
files were parsed into data structures containing the rel-
evant audio information (i.e. tracks, channels numbers,
note events, etc). The melody was isolated and extracted
by exploiting MIDI conventions for representing the lead
voice. Target labels were determined by sampling the
MIDI transcript at the precise times corresponding to each



Table 1: Results of the formal MIREX 2005 Audio Melody Extraction evaluation fromhttp://www.music-ir.
org/evaluation/mirex-results/audio-melody/ . Results marked with * are not directly comparable to the
others because those systems did not perform voiced/unvoiced detection. Results marked† are artificially low due to an
unresolved algorithmic issue.

Rank Participant Overall Accuracy Voicing d′ Raw Pitch Raw Chroma Runtime / s
1 Dressler 71.4% 1.85 68.1% 71.4% 32
2 Ryyn̈anen 64.3% 1.56 68.6% 74.1% 10970
3 Paiva 2 61.1% 1.22 58.5% 62.0% 45618
4 Poliner 61.1% 1.56 67.3% 73.4% 5471
5 Marolt 59.5% 1.06 60.1% 67.1% 12461
6 Paiva 1 57.8% 0.83 62.7% 66.7% 44312
7 Goto 49.9%* 0.59* 65.8% 71.8% 211
8 Vincent 1 47.9%* 0.23* 59.8% 67.6% ?
9 Vincent 2 46.4%* 0.86* 59.6% 71.1% 251
10 Brossier 3.2%* † 0.14 * † 3.9%† 8.1%† 41

STFT frame in the analysis of the synthesized audio.

1.4 Segmentation

Voiced/Unvoiced melody classification is performed by
simple energy thresholding. The sum of the magnitude
squared energy over the frequency range200 < f <
1800 Hz is calculated for each 10 ms frame. Each frame
is normalized by the median energy value for the given
song, and segments are classified as voiced or unvoiced
with respect to a global threshold.

2 Results

The results of the formal MIREX 2005 Audio Melody
Extraction evaluation are show in table 1. While “Raw
Pitch” and “Raw Chroma” measure the accuracy of the
dominant melody pitch extraction (measured only over
the frames that were tagged as containing melody in the
ground truth, and where the latter ignores octave errors),
the “Overall Accuracy” combines pitch accuracy with cor-
rect detection of unvoiced frames; the “Voicingd′” figure
indicates the accuracy of the detection of frames that do or
do not contain melody (d′ is the separation between two
unit-variance Gaussians that would give the observed false
alarm and false reject rates for some choice of threshold).

Calculating statistical significance for these results is
tricky because the classification of individual 10 ms win-
dows is highly non-independent – in most cases, two
temporally-adjacent frames will correspond to virtually
identical classification problems. Each individual melody
note comes much closer to an independent trial: we esti-
mate that there are about 2000 such trials in the test set,
which consisted of 25 musical excerpts from a range of
styles of between 10 s and 40 s in length. Given this many
trials, and assuming the error rates remain the same at the
note level, a one-tailed binomial significance test requires
a difference in error rates of about 2.4% for significance
at the 5% level for results in this range. Thus, roughly,
for overall accuracy the performance differences between
the rank 1 (Dressler) and 2 (Ryynänen) systems are sig-
nificant, but the next three (including ours at rank 4) are
not significantly different. Raw pitch and chroma, how-

ever, give another picture: For pitch, our system is in a
three-way tie for top performance with the top two ranked
systems, and when octave errors are ignored we are in-
significantly worse than the best system (Ryynänen in this
case), and almost significantly better than the top-ranked
system of Dressler.

The fact that Dressler’s system performed best overall
even though it did not have the highest raw pitch accuracy
is because it combined high pitch accuracy with the best
voicing detection scheme, achieving the highestd′. Our
voicing detection scheme, which consisted of a simple
adaptive energy threshold, came in a joint second on this
measure. Because voicing errors lead to false negatives
(deletion of pitched frames) and false positives (insertion
of pitch values during non-melody times), this aspect of
the algorithm had a significant impact on overall perfor-
mance. Naturally, the systems that did not include a mech-
anism to distinguish between melody and accompaniment
(Goto, Vincent, and Brossier) scored much lower on over-
all accuracy despite, in some cases, raw pitch and chroma
performance very similar to the higher-ranked systems.

We note with some regret that our system failed to
score better overall than Paiva’s 2nd submission despite
exceeding it by a healthy margin on the other measures.
This paradoxical result is explained in part by the fact
that the voicingd′ is calculated from all frames pooled
together, whereas the other measures are averaged at the
level of the individual excerpts, giving greater weight to
the shorter excerpts. Paiva 2 did better than our system on
voicing detection in the shorter excerpts (which tended to
be the non-pop-music examples), thus compensating for
the worse performance on raw pitch. Also, although not
represented in the statistics of table 1, the voicing detec-
tion of Paiva 2 had an overall higher threshold (more false
negatives and fewer false positives), which turned out to
be a better strategy.

The final column in table 1 shows the execution time
in seconds for each algorithm. We see an enormous varia-
tion of more than 1000:1 between fastest and slowest sys-
tems – with the top-ranked system of Dressler also the
fastest! Our system is expensive, at almost 200 times
slower, but not as expensive as several of the others. The
evaluation, of course, did not place any emphasis on exe-



cution time, and what we are seeing is that some authors,
ourselves included, paid the minimum of attention to this
aspect.

3 Conclusions

While our system did not perform top in the evaluation, it
was very comparable to the top systems (except, perhaps,
in runtime), showing that pure classification is a very vi-
able approach; all the other systems used explicit models
of pitch notes as consisting of harmonic partials or peri-
odic waveforms. Our system is less mature than those of
some of the participants, who have been refining pitch ex-
traction for many years; we are excited to see if enhance-
ments such as larger and more diverse training sets, and
improved normalization to reduce variability due to differ-
ent instrument types, can improve our results still further.
Since our approach is so radically different to those of the
other systems, there is no reason to assume that we will
‘plateau’ at a similar level of performance – although the
closely-bunched performance in this evaluation is quite
striking, suggesting perhaps that the remaining 30% of
frames may be much more difficult to recognize correctly.
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