
Tree symbolic music representation for key finding

David Rizo, José M. Iñesta
Dept. Lenguajes y Sistemas Informáticos

Universidad de Alicante, E-03071 Alicante, Spain
drizo,inesta@dlsi.ua.es

ABSTRACT

This work proposes a polyphonic symbolic music repre-
sentation that uses trees as coding scheme to solve the
problem of key finding

Keywords: tonality, key, symbolic representation, trees

1 Introduction

In music theory, the tonality is defined as the quality by
which all tones of a composition are heard in relation to a
central tone called the keynote or tonic.

The majority of works that model the tonality of a
song use linear sequences of notes (Zhu and Kankanhalli
(2004), Temperley (2002)). There are other alternatives
such as the spiral array presented in Chew (2001), and a
different approach, in Rizo et al. (2003) a new tree repre-
sentation of monophonic music was used to compare the
similarity of musical fragments, getting better results with
trees than using typical string sequences. In this paper we
extend the proposed tree model to represent polyphonic
melodies, and use it to find the key of a melodic segment.

The paper is organized as follows: first the mono-
phonic tree representation of music is reviewed, next the
extension to polyphonic music is introduced. After that,
the preprocess of trees is explained before describing the
algorithm to calculate the key of the song. We expose the
experiments that have been performed and give the ob-
tained results. We end with some conclusions and planned
future works.

2 Tree representation for music sequences

A melody has two main dimensions: time (duration) and
pitch. In linear representations, note durations are coded
by explicit symbols, but trees are able to implicitly repre-
sent this dimension, making use of the fact that note dura-
tions are multiples of basic time units, mainly in a binary
(sometimes ternary) structure. This way, trees are less
sensitive to the codes used to represent melodies, since
there are less degrees of freedom for coding.

In this section we review shortly the tree construction
method that was introduced in Rizo et al. (2003) for rep-
resenting a monophonic segment of music, defining the
terms needed to build the model.

2.1 Tree construction for each measure

The tree representation approach is based on the fact that
the duration of the music notation is designed according to
a logarithmic scale: a whole note lasts double than a half
note, that is two times longer than a quarter note, etc. (see
Fig. 1).

�

���������

���������

�
�����

�����

�
��� ���

�� ��

�
��� ���

�� ��

�
�����

�����

�
��� ���

�� ��

�
��� ���

�� ��

Figure 1: Duration hierarchy for different note figures.
From top to bottom: whole (4 beats), half (2 beats), quar-
ter (1 beat), and eighth (1/2 beat) notes.

Each melody measure is represented by a tree, τ . Each
note or rest will be a leaf node. The left to right ordering of
the leaves keeps the time order of the notes in the melody.
The level of each leaf in the tree determines the duration
of the note it represents, as displayed in figure 1: the root
(level 1) represents the duration of the whole measure (a
whole note), each of the two nodes at level 2 represents
the duration of a half note. In general, nodes at level i
represent the duration of a 1/2i−1 of a measure.

During the tree construction, internal nodes are cre-
ated when needed to reach the appropriate leaf level. Ini-
tially, only the leaf nodes will contain a label value, but
then, a bottom-up propagation of these labels is performed
to fully label the tree nodes. The rules for this propagation
will be described later, in section 2.4.

Labels are codes representing any information relating
to pitch. In this work labels are the pitch of the note with-
out octave information, also named folded pitch, defined
by the MIDI note number modulo 12, ranging from 0 to
11. Then, a C will be represented as a 0, a C sharp as a 1,
and B as a 11. Rests are coded with a special symbol ’s’.

An example of this scheme is presented in Fig. 2. In
the tree, the left child of the root has been splitted into two
subtrees to reach the level 3, that corresponds to the first
note (a quarter note, duration of a 1/22 of the measure,

pitch B (11). In order to represent the durations (both are
1/8 of the measure) of the rest and note G (7), a new sub-
tree is needed for the right child in level 3, providing two
new leaves for representing the rest (s) and the note G (7).
The half note C (0) onsets at the third beat of the measure,
and it is represented in level 2, according to its duration.

It can be seen in figure 2 how the order in time of the
notes in the score is preserved when traversing the tree
from left to right. Note how onset times and durations are
implicitly represented in the tree, compared to the explicit
encoding of time needed by strings. This representation
is invariant against changes in tempo, or different meter
representations of the same melody (e.g. 2/2, 4/4, or 8/8).

For a deeper explanation of how to deal with dotted
notes, ternary subdivisions, grace notes and more elab-
orated examples see the full method in Rizo and Iñesta
(2002).

� 4
4 � � �� �

11 s 7 0

���
���

�� ��
11

�� ��
s 7

0

Figure 2: Simple example of tree construction

2.2 Complete melody representation

The method described above is able to represent a single
measure as a tree, τ . A measure is the basic unit of rhythm
in music, but a melody is composed of a series of M mea-
sures. In Rizo et al. (2003) it was proposed to build a
tree with a root for the whole melody, being each measure
sub-tree a child of that root. This can be considered as a
forest of sub-trees, but linked to a common root node that
represents the whole. Figure 3 displays an example of a
simple melody, composed of three measures and how it is
represented by a tree composed of three sub-trees, one per
measure, rooted to the same parent node. The level 0 will
be assigned to this common root.

2.3 Polyphony

The method to represent polyphonic music is straight for-
ward. All notes are placed in the same tree following the
rules of the monophonic music representation, then, two
notes with the same onset time will be put in the same
node. If a node already existed when a new note is put in
the tree, the pitch of this note is added to the current node
label. If the label in the node was a rest, it is substituted
by the note pitch. The figure 4 contains a melody with
a chord as an example. Before propagating (section 2.4),
only leaves are labelled.

� 4
4 � � � �

�
� � � �

11 2 4 5 0

������

������

�� ��
11

�� ��
2 4

5

���
���

5
�� ��

����
s 0

0

Figure 3: An example of the tree representation of a com-
plete melody. The root of this tree links all the measure
sub-trees.

���� � ������
7
4
0

s 4
2
11
7

0,4,7,11,2

����
����

0,4,7 4,7,11,2

��� ���

4
�� ��
s 4

7,11,2

Figure 4: An example of a polyphonic melody, internal
nodes are labelled during the propagation

2.4 Bottom-up propagation of labels

Once the tree is constructed, a propagation step is per-
formed. The propagation rules are different from those
proposed in Rizo et al. (2003), where the target was the
similarity search. Now the presence of all the notes is em-
phasized since every note and chord are tips to find the
key of the song segment.

The propagation process is performed recursively in a
post-order traversal of the tree. Labels are propagated us-
ing the set algebra. Let L(τ) be the set of folded pitches
label of the root node of the subtree τ . When the label of
the node is a rest, the label set is empty: L(τ) = ∅. Then,
given a subtree τ with children ci, the upwards propaga-
tion of labels is performed as L(τ) =

⋃
i L(ci).

In figure 4 we can see how the E quaver note (folded
pitch 4) that shared a parent with the rest is promoted (∅∪
{4} = {4}), and merging this 8th note ({4}) and the chord
next ({7,11,2}) results a parent label: ({4} ∪ {7, 11, 2} =
{4, 7, 11, 2}). Similarly occurs for the root of the measure.

3 Key finding algorithm

Suppose we have a local segment of music with two notes
C and G (first bar in score at figure 5) and want to know
which one of the 24 different keys (12 major, 12 minor)
describes this segment the best in terms of tonality. The
answer is not a unique key: maybe it is in C major, or in
B minor, A minor, etc... The second measure is probably
in C major, A minor, but not in B minor. The third local
segment is the third measure, it is surely in C major, and
with less probability in A minor because the chords that
appear are the subdominant, dominant and tonic of C ma-
jor. If we combine the possible keys of the three bars, the
most probable answer is C major.

�� ����������
� �

0 7 5
0
9
5

2
11
7

7
4
0

0,2,4,5,7,9,11

���������

���������

0,7
�� ��
0 7

5 0,2,4,5,7,9,11

����
����

0,2,5,7,9,11

��� ���

5,9,0 7,11,2

0,4,7

Figure 5: An example of key detection

This means that each local segment can give a clue of
the possible keys in which it is written in, but the combi-
nation of many local clues can reduce the possible keys
leaving at the end the correct tonality.

In our tree scheme, each node is a local segment that
contains one or more folded pitches, each node may be in
several possible keys. If the possible keys are combined
from the leaves to the root following a post-order traversal
of the tree, finally the root will give us the correct key.
Following the tree of figure 5, the leftmost node with a
{0} label can be in any key that has not the C with a sharp
in its key signature. Its sibling node, the one with a label
{7} can be in any key that has not the G sharp or flat in its
key signature. Their parent node, the one with label {0,7}
contains a chord (actually it should be interpreted as an
arpeggio), this chord gives more probability to some keys
(e.g. C major) than others that are also possible (e.g. F
major), furthermore, if the probabilities are combined for
these three nodes in a convenient way, the possibilities are
reduced.

The computing of the possible keys for each node is
performed in two steps. First a rate is obtained for each
one of the 24 keys following a rules algorithm that will
be detailed later. Then, the keys are ordered according to
the rate obtained giving as a result a rank, which have the
more possible keys first. Once each individual node has
a rank with the keys ordered, a post-order combination

of these ranks yields a final rank at the root node of the
tree that will give us the probability of each key to be the
central key of the whole song.

The algorithm 1 performs the key finding over the
polyphonic tree.

Algorithm 1 Key find on tree τ

if arity(τ) = 0 then
calculate keys ranks for τ root node (see section
3.2)

else
for all child(τ) ∈ children(τ) do

Algorithm 1 for tree child(τ)
end for
Combine the results for root node of τ and every
child into the root node of τ (see section 3.3)

end if

3.1 Scales, degrees and chords

3.1.1 Scales

The definition 3.1 specifies the scales we have worked
with represented as a vector indexed by the interval from
the tonic note of the key (from 0 to 11), being M the major
scale, and m the minor scale. The values M [i] �= 0 are the
degrees in the scale represented in roman numbers, being
the zero values those notes that do not belong to the scale.
In the minor scale the natural, harmonic and melodic mi-
nor scales have been represented.

Definition 3.1 Diatonic scales

Major scale M = [I, 0, II, 0, III, IV, 0, V, 0, VI, 0, VII]

Minor scale m = [I, 0, II, III, 0, IV, 0, V, VI, VI, VII, VII]

3.1.2 Degrees

Let a key be divided into its key note and its mode, major
or minor, defined by the corresponding scale S. Then,
given a folded pitch p and a key k, the degree of the note
folded pitch is defined as:

degree(p, k, S) = S[(((p + 12) − k) mod 12)] (1)

The +12 is used to avoid a negative modulo.
A given scale, S, can be either S = M or S = m. Given

the set of |P | folded pitches P = {p1, p2, ..., p|P |} in a
node, the number of pitches in P that belong to the scale S
of key k is defined as:

scaleNotes(P, k, S) =
|P |∑

i=1

(degree(Pi, k, S) �= 0) (2)

Given the degree for a note in the key, we consider as
tonal and modal degrees:

Tonal degrees TD = {I, IV, V}
Modal degrees MD = {III}

Given the above definitions, the tonalDegreesNotes
and modalDegreesNotes functions are defined as:

tonalDegreesNotes(P, k, S) =
|P |∑

i=1

(degree(Pi, k, S) ∈ TD)

(3)

modalDegreesNotes(P, k, S) =
|P |∑

i=1

(degree(Pi, k, S) ∈ MD)

(4)

3.1.3 Chords

Only the diatonic scale triad chords have been considered.
The set of notes contained in the label of a node may con-
stitute either a full triad or a partial one. Given the set
P, chordNotes(k, c, P) is defined as the number of ele-
ments in P that belong to a chord c of key k.

In figure 4, look at the leftmost node in the tree that
represents the first chord in the score. P = {0, 4, 7}, for
k = C major and c =I (the tonic triad of C Major),
then chordNotes(k, c, P)=3 because it contains the three
pitches of this chord (C represented by a 0, E as a 4 and
G whose folded pitch is 7). Let k = A minor and c =I
again (A minor tonic triad composed by the pitches A, C
and E), the result would be 2 because only the pitches C
and E are found in the chord.

3.2 Node keys rating

Given the previous set of definitions, the rules in algorithm
2 compute the rate for each key according to the set of
pitches in a node. The return values correspond to the rate
for each key in the node. These rates, detailed in the table
1, have been established empirically.

This scheme gives preference to the triads that clearly
belong to a key, it rates with less important two notes
chords and single notes that belong to the key, and leaves
with no rate the chords with many notes that may belong
to several keys.

After computing the previous rates, the keys are
ranked. The objective of this ranking is to avoid the prop-
agation of a high rate for a key in a node that might con-
dition the final result.

To compute the ranking, the keys are ordered. If two
keys have the same rate, they are given the same rank po-

Constant Rate
FULL TRIADS I V 16

FULL TRIADS 15
2NOTES TRIADS I V 9

2NOTES TRIADS 8
NOTES CHORDS I V 10

2NOTES CHORDS 9
TONAL DEGREES 4
MODAL DEGREES 3

SCALE NOTES 2

Table 1: Rates

Algorithm 2 Key k rating, for the node pitches P

if (|P | = 3) then
if (chordNotes(k, I, P)=3 or

chordNotes(k, V, P)=3) then
return (FULL TRIADS I V)

else if (chordNotes(k, II, P)=3
or chordNotes(k, III, P)=3
or chordNotes(k, IV, P)=3
or chordNotes(k, VI, P)=3
or chordNotes(k, VII, P)=3) then
return (FULL TRIADS)

else if (chordNotes(k, I, P)=2 or
chordNotes(k, V, P)=2) then
return (2NOTES TRIADS I V)

else if (chordNotes(k, II, P)=2
or chordNotes(k, III, P)=2
or chordNotes(k, IV, P)=2
or chordNotes(k, VI, P)=2
or chordNotes(k, VII, P)=2) then
return (2NOTES TRIADS)

end if
else if (|P | = 2) then

if (chordNotes(k, I, P)=2
or chordNotes(k, V, P)=2 then
return (2NOTES CHORDS I V)

else if chordNotes(k, II, P)=2
or chordNotes(k, III, P)=2
or chordNotes(k, IV, P)=2
or chordNotes(k, VI, P)=2
or chordNotes(k, VII, P)=2 then
return (2NOTES CHORDS)

end if
else if (|P | − scaleNotes(P, k, S) > 2) then

if (tonalDegreesNotes(P, k, S) > 0) then
return (TONAL DEGREES)

else if (modalDegreesNotes(P, k, S) > 0) then
return (MODAL DEGREES)

else if (scaleNotes(P, k, S) > 0) then
return (SCALE NOTES)

end if
end if

sition. The best rank is given a 0, 1 for the second, and so
on. The function rank(τ, k) returns the position of key k
in the rank.

3.3 Subtree key combination and propagation

Once the ranks for the children nodes and the parent node
have been calculated, they must be combined to replace
all the key ranks in the parent node. This operation is
performed in two steps, first the calculation of key rates
and then a new ranking is performed.

Given a parent tree node τ , with children
c1, c2, ..., carity(τ), the new rate for each key k is
calculated as:

rate(τ, k) = rank(τ, k) +
arity(τ)∑

i=1

rank(ci, k) (5)

With these new rates, a new ranking is required, that

Relation to correct key Points
Same 1

Perfect fifth 0.5
Relative major/minor 0.3
Parallel major/minor 0.2

Table 2: MIREX 2005 Key finding scorings

is calculated as already described. This scheme captures
both the actual chords and the chords that are split in
arpeggios.

4 Experiments and results

Our algorithm is evaluated during the Audio and Symbolic
Key Finding topic of the 2nd Annual Music Information
Retrieval Evaluation eXchange (MIREX 2005) contest 1.
A set of 1,252 MIDI files has been used. The evaluation
process is the one proposed for the contest using for each
file the scoring detailed in table 2.

The success rate of an algorithm is obtained as the
achieved points averaged for all the songs in the corpus.

Total Score 982.4
Percentage Score 78.5

Correct Keys 913
Perfect 5th Errors 81

Relative Major/Minor Errors 87
Parallel Major/Minor Errors 14

Other Errors 157
Runtime (s) 631

Table 3: 2005 MIREX Contest Results

The experiment has been performed on a machine
running a CentOS operating system, and processor Dual
AMD Opteron 64 1.6GHz. Our system uses the Java
1.4.2-38 virtual machine.

The results of the experiment with our algorithm are
detailed in table 4. The complete results can be found
in the web http://www.music-ir.org/evaluation/mirex-
results/sym-key/index.html.

5 Conclusions and future work

In this work we have shown a polyphonic music tree rep-
resentation that has performed as a simple and adequate
representation for finding the key of a song. We have seen
that with very little harmonic information a good key find-
ing can be achieved. This early system can be improved
by the use of a more powerful harmonic model that pre-
sumably will report better results. We are working also in
the key change finding inside the same song getting some
promising results.

1http://www.music-ir.org/mirexwiki/index.php/MIREX 2005

6 Acknowledgments

This work was supported by the projects Spanish CICYT
TIC2003–08496–C04, partially supported by EU ERDF,
and Generalitat Valenciana GV043-541.

References

Elaine Chew. Modeling Tonality: Applications to Mu-
sic Cognition. In Johanna D. Moore and Keith Sten-
ning, editors, Proceedings of the 23rd Annual Meet-
ing of the Cognitive Science Society, pages 206–211,
Edinburgh, Scotland, UK, August 1-4 2001. Lawrence
Erlbaum Assoc. Pub, Mahwah, NJ/London. URL
http://www.hcrc.ed.ac.uk/cogsci2001.

D. Rizo, F. Moreno-Seco, and J.M. Iñesta. Tree-structured
representation of musical information. Lecture Notes in
Computer Science - Lecture Notes in Artificial Intelli-
gence, 2652:838–846, 2003.

David Rizo and José M. Iñesta. Tree-structured repre-
sentation of melodies for comparison and retrieval. In
Proc. of the 2nd Int. Conf. on Pattern Recognition in
Information Systems, PRIS 2002, pages 140–155, Ali-
cante, Spain, 2002.

D. Temperley. A bayesian approach to key-finding. Lec-
ture Notes in Computer Science, 2445:195–206, 2002.

Y. Zhu and M. Kankanhalli. Key-based melody segmen-
tation for popular song. 17th International Conference
on Pattern Recognition (ICPR’04), 3:862–865, 2004.

