

AN ALGORITHM FOR DETECTING AND LABELING
DRUM EVENTS IN POLYPHONIC MUSIC

Koen Tanghe1, Sven Degroeve2, Bernard De Baets2
1 IPEM, Department of Musicology, Ghent University, Blandijnberg 2, 9000 Ghent, Belgium

Koen.Tanghe@UGent.be
2 Department of Applied Mathematics, Biometrics and Process Control, Ghent University

ABSTRACT
This document describes an algorithm that tries to locate
and label drum events in polyphonic musical audio. The
three main parts of the algorithm are described in detail
and an overview of the developed applications is given.
Finally, the results of an evaluation performed in the
context of the ISMIR2005 MIREX “contest” [1] are
reported.

Keywords: drum detection, onset detection, feature ex-
traction, support vector machines, audio-to-MIDI

1 INTRODUCTION
This research was started in the context of the Musical
Audio Mining (MAMI) project [2]. In order to query
databases of musical audio based on the musical content
itself (which is what this project is about), one needs to
have descriptions of that musical content. Transcribing
the drums in a musical piece is therefore one possible
way to obtain such a description. Obtaining melodic
information is another one, but since drum sounds are
very important in many popular music genres nowadays,
we thought it would also be interesting to focus on this
aspect of the music. Also, drum detection research has
not gained as much attention over the last decades as
melody extraction research, which makes it an even
more interesting topic to study.

Our earlier studies ([3],[4]) mainly dealt with only
one particular aspect of the drum detection process or
with drum detection in a more restricted environment,
whereas this document describes the final overall sys-
tem that was also used for the audio drum detection
track of the ISMIR2005 MIREX “contest” and works
on “full” CD-quality music.

The algorithm we developed can be categorized as a
feature-based classification method. The algorithm used
by Gillet and Richard [5] which also entered the
MIREX “contest” is similar to our method in that it also
performs onset detection, feature extraction and feature
vector classification using Support Vector Machines.
However, their method performs a band-wise noise sub-
space projection before the onset detection and feature
extraction stages and it also uses an extra adaptation
stage at the end that builds a “localized” model per au-
dio excerpt, which is then used to obtain a more special-
ized classification for that particular fragment.

2 ALGORITHM DESCRIPTION

2.1 Overall scheme

This drum detection algorithm has an architecture con-
sisting of three main parts, which are shown in figure 1.
The onset detection is the first stage. It locates moments
in time where drum events might be present. The second
stage is the feature extraction stage where features are
extracted from the audio around the detected onsets. And
finally the classification stage makes a decision for each
onset (based on the extracted audio features) about
which type of event is present at that location (drum
event or not, and if so, which type of drum event). Each
of these three stages is specified on the following pages.

2.2 Training and application phase

As we are using a supervised machine learning method,
the overall methodology is actually split up in two
phases: a “training phase” and an “application phase”. In
order to use the drum detection algorithm on unseen
audio in the application phase, it must first be trained
during a training phase, in which it is fed with audio for
which the drum events are known in advance.

In this training phase, the user supplies pairs of sound
files and corresponding MIDI files which contain a
symbolic representation of the drum events that can be
heard in the sound file. This means that for each rele-
vant drum event in the sound file, there is a MIDI note

Figure 1: Overall architecture of the
drum detection module.

onset detection

feature extraction

feature
classification

audio signal

label

on message at that moment and for that specific drum
type on channel 10 in the MIDI file. The drum types
represent abstract categories of drum sounds such as
bass drums, snare drums etc… Each of these drum types
gets a label (BD, SD, …) and there may be multiple
MIDI note numbers that correspond to the same drum
type.

Obtaining the training audio and MIDI files is usu-
ally accomplished using two common methods. The
first starts from an existing MIDI file, usually either a
full MIDI file as can be found on the Internet, or a MIDI
file from a music production project (programmed
drums, or drums recorded on an electronic drum kit).
The corresponding audio file is then obtained by re-
cording the audio output while playing back the MIDI
file through various synthesizer instruments, possibly
together with audio tracks containing additional voice or
guitar recordings.

The second method works the other way around and
starts from the audio file, which is manually annotated
using a combination of MIDI drum performance re-
cording and MIDI drum track editing. This can be done
in a sequencer program where the audio file is put on an
audio track, and a MIDI track is filled in by the annota-
tor who tries to imitate what he hears by placing drum
events on that MIDI track [8]. While being more time-
consuming than the first method, this method can be
applied to music for which the MIDI drum events are
not readily available and allows us to work with music
files that are of the same realistic quality as the ones the
algorithm will operate on in the application phase.

2.3 Onset detection

2.3.1 Introduction

Since the classification stage should be able to distin-
guish between drum events and non-drum events, we
would rather have the onset detector detect too many
onsets than too few. If the classifier is good enough, it
should be able to throw out the non-drum events. Of
course, there are limits: in the extreme case we could just
feed the whole continuous stream of audio features to
the classifier instead of first doing some onset detection,
but that is very inefficient. And it might not even work
well either: multiple drum events would most probably
be detected around onset locations at the feature vector
sample rate, so a mechanism to extract the exact event
location from these multiple events would still be needed
after all. Hence, the use of an onset detection stage was
chosen.

2.3.2 Splitting up the signal in different frequency bands

First of all, the input signal is routed through a win-
dowed short term Fourier transform (of which we only
use the amplitudes) and a triangular shaped Mel scale
filter bank to obtain a multi-band spectral representation
of the audio signal at a reduced sampling rate. The re-
sults for each frame step are stored in a circular buffer
for consultation later on.

2.3.3 Calculating amplitude changes

For each of the N frequency bands, a weighted sum of
the differences between the current amplitude level and
that of the recent past is calculated. More recent values
have a higher importance than older ones. The N outputs
of the Mel filter bank are also processed by an envelope
follower, which roughly follows the overall shape of the
amplitude fluctuations over a longer period of time. By
dividing the weighted differences by the corresponding
envelope follower outputs, we obtain a relative differ-
ence value for each frequency band, which is a measure
for the amount of energy change in that band. Figure 2
shows the processing scheme up to this point.

2.3.4 Making decisions

Method 1
In this method, the relative differences in each fre-
quency band are summed together and divided by the
number of bands. This one-dimensional stream of
summed relative differences is then sent through a mod-
ule that decides whether an onset occurs at this moment
or not. An explanation of the heuristics on which this
decision is based can be found below. The (simple)
scheme for this decision method is shown in figure 3 on
the left.

Method 2
In this method, the relative differences in each fre-
quency band are first sent through a peak detector that
just checks if a local maximum has occurred in any of
the bands. If this is the case, an additional check is done
to see if that maximum is strong enough (higher than a
threshold value) to be kept. For each time step, this re-
sults in a Boolean vector for which a "true" means that a
strong peak occurred in the corresponding frequency
band. Just like in method 1, this (now multidimensional)

STFT

mel filterbank

circular buffer

envelope follower

weighted difference

/

audio signal

relative differences

NB

1

N

N

N

N

N

N

Figure 2: Calculation of amplitude changes.

result is then sent through a module that decides
whether or not an onset really occurred. See figure 3 for
the scheme of this method.

Heuristic grouping peak detector
This processing block is rather important because it
needs to make the final decision about whether or not an
onset occurred, based on the recent history of relevant
peaks (in different bands for method 2). Because peaks
in different frequency bands often do not occur at the
exact same moment in time, and do not always lead to a
single overall peak, we need to use some heuristics in
order to make a more robust decision. The processing
scheme is shown in figure 4.

First, all elements of the input vector are summed to-
gether and the sum is stored in a circular buffer (in case

of a Boolean vector, 1 is used for "true" and 0 for
"false"). Then the sum of these sums over a certain pe-
riod in the past is calculated and stored in another circu-
lar buffer. For method 2, this effectively comes down to
counting the number of relevant peaks over all fre-
quency bands in the last x milliseconds. This stream of
values is sent through a peak detector that outputs "true"
if a local maximum is reached or "false" if not. If a local
maximum has occurred, we check if the peak value is
above a certain threshold, and if the level has up to now
been below a certain hysteresis level. This hysteresis is
added to alleviate the well-known problem encountered
with simple thresholding where small fluctuations
around the threshold level may cause multiple on/off
triggers. The result is stored in a circular buffer (the
"peak candidate buffer").

Up to here, we have been dealing with a single pos-
sible new peak candidate. From here on, we will be
dealing with the set of buffered peak candidates and try
to find out if a peak at the end of the buffer (which oc-
curred some time ago) is indeed a final peak or not. To
do that, we extract the oldest value from the "peak can-
didate buffer" and check its value. If this is "false", we
output "false" and hence decide "no onset" at that mo-
ment in time (note that this moment lays in the past, so
we have a delay here). If this is "true", we check if there
are more recent peaks that are higher than the one we
are considering. If this is the case, we decide "no onset"
at that moment in time. If this is not the case, we set all
more recent peaks to "false" (thus eliminating them as
possible future onsets), and decide "onset" at that mo-
ment in time.

To summarize:
- the sum of all channels over a specified group-

ing period is calculated
- only peaks in this sum higher than a threshold

value are considered
- after a detected peak, the calculated sum must

decrease below a certain hysteresis level before
a new peak can be detected

- a minimum time interval between two successive
peaks is specified and within this period, the
highest peak is withheld

So as the final output of the onset detector, we get a
continuous stream of Boolean values where a "true"
means that an onset has occurred a fixed amount of time
in the past (this fixed delay is on the order of 40 to 100
ms, adjustable by the user).

2.4 Feature extraction

2.4.1 Introduction

We assume that a fixed amount of audio data following a
potential drum onset (detected in the first stage) contains
enough information necessary to make a valid decision
in the last (classification) stage. The feature extraction
stage reduces the raw audio samples from this context to
a more compact and more meaningful representation of
the audio content, by calculating some properties that are

circular buffer

sum over
grouping interval

circular buffer

circular buffer

peak detector

check peak is
above threshold

and
level was

below hysteresis

check for more
recent higher peaks

sum

trigger

bool

n

1

1

1

bool

bool

bool

1

true

false

1

input vector

bool

check value at
minIOT in past

Figure 4: Heuristic grouping peak detector processing scheme.

relative differences

normalized sum

heuristic grouping
peak detector

trigger

N

1

bool

Figure 3: Making onset decisions (methods 1 and 2).

relative differences

peak detector

heuristic grouping
peak detector

trigger

thresholding

N

N

N

relative differences

peak detector

heuristic grouping
peak detector

trigger

thresholding

N

N

N

relative differences

peak detector

heuristic grouping
peak detector

trigger

thresholding

bool

N

N

N

thought to be relevant for discriminating different types
of percussive sounds.

The module receives a continuous stream of audio
samples and always performs some light processing on
this stream (no matter whether an onset was detected or
not). This only involves DC-blocking, very low level
noise addition (to avoid numerical instability problems)
and 3 band filtering (if needed for the requested fea-
tures). Results are stored in circular buffers that are big
enough to hold at least a number of values correspond-
ing to the context length (CL) over which features
should be extracted (specified as a duration in seconds).

At any time, the module can be asked to extract a fea-
ture vector, which is calculated over the buffered data
and hence corresponds to a segment of length CL and
starting at now - CL. This means that if at a certain time
T an onset is reported by the onset detection stage, the
request to calculate a feature vector should be delayed
by CL so that the segment that is used when the calcula-
tions are performed effectively contains all samples over
a duration of CL starting at T and ending at T + CL (see
figure 5).

All N features are represented by one or more real
values, and are combined into a single feature vector, so
for each onset from stage 1, there is a feature vector of
length N corresponding to an audio segment starting at
the onset time and ending at the onset time + CL. The
extracted audio features are explained in detail below.

2.4.2 Extracted features

• RMS in the overall signal
This is simply a basic measure for the overall sound
level of the audio and is calculated as the root-mean
square value of all samples in the segment, in dB.
Here N is the number of samples in the segment, and ix
is the i -th sample of the segment:

1
2

0
1020.log

N

i
i

x
RMS

N

−

==
∑

• RMS in 3 frequency bands
When inspecting the accumulated spectra of hundreds of
bass drums, snare drums and hihats, it can be seen that
the spectral energy distributions of these different
sounds are located in more or less distinct frequency
bands, although not completely separated (see figure 6).
Hence we divided the spectrum into three frequency
bands and computed energy-related features over these

bands. The filters are simple Butterworth filters and
were designed using Matlab's buttord and butter func-
tions (the amplitude response of these filters is shown in
figure 7):

fs = 44100;
[Ord,Wn] = buttord([49 50]/(fs/2),[0.01
2000]/(fs/2),0.01,62);
[B{1},A{1}] = butter(Ord,Wn);
[Ord,Wn] = buttord([200 201]/(fs/2),[1
1300]/(fs/2),0.01,20);
[B{2},A{2}] = butter(Ord,Wn);
[Ord,Wn] = buttord([5100 16300]/(fs/2),[65
22000]/(fs/2),0.05,60);
[B{3},A{3}] = butter(Ord,Wn);

For each of the three filtered signals, RMS is again

calculated as was done for the overall RMS, yielding
RMSb1, RMSb2 and RMSb3: one RMS value for each
band.

Figure 6: Accumulated amplitide spectra for different drum
types.

Figure 7: Amplitude response of the three drum filters.

• RMS per band relative to overall RMS
Since the contribution of the 3 frequency bands to the
overall sound level can be more interesting than the ab-
solute levels, we also calculate relative levels as follows:

RMSb1Rel = RMSb1 - RMS
RMSb2Rel = RMSb2 - RMS
RMSb3Rel = RMSb3 - RMS

Figure 5: Calculation of features over a fixed context.

now
T + CL

start end

past future

CL

last onset
T

• RMS per band relative to RMS of other bands
The differences in sound level between the different
frequency bands are also calculated:

RMSbRelComb12 = RMSb1 - RMSb2
RMSbRelComb13 = RMSb1 - RMSb3
RMSbRelComb23 = RMSb2 - RMSb3

• zero-crossing rate
This feature reports the number of times the signal
changes sign per second. To avoid obtaining high values
only due to noise, we use a zero-tolerance level of -60
dB, which means that only zero-crossings that go from
-ZT to +ZT (or vice versa) are taken into account as
genuine zero crossings (ZT = 0.001 in this case).

• crest factor
The crest factor is calculated as the ratio between the
maximum absolute value of the signal and its RMS
value. The crest factor of a musical signal is known to be
much higher than for a speech signal.

()max
()
x

CrestFactor
RMS x

=

• temporal centroid
The temporal centroid is calculated as the centre of grav-
ity of the distribution of the power values of the samples
in the segment. The lower this is, the more energy is
located at the beginning of the segment (and vice versa).

1
2

0
1

2

0

.
N

i
i
N

i
i

i x
TempCentroid

x

−

=
−

=

=
∑

∑

• spectral centroid
This is calculated as the centre of gravity of the power
spectrum. Roughly speaking, the lower this is, the more
energy is located in the lower frequency components
(and vice versa).

()

()

1

0
1

0

.
NF

i i
i
NF

i
i

f P f
SpecCentroid

P f

−

=
−

=

=
∑

∑

• spectral kurtosis
Spectral kurtosis is calculated as the fourth order mo-
ment of the power spectrum, offset by -3. It says some-
thing about the size of the tails of the distribution of the
amplitude spectrum values. Distributions with relatively
large tails have positive kurtosis, distributions with small
tails have negative kurtosis, and normal distributions
have zero kurtosis. In the following formula, µ = mean
and σ = standard deviation:

()
1

4

0
4

()
3

.

NF

i
i

P f
SpecKurtosis

N

µ

σ

−

=

−
= −
∑

• spectral skewness
Spectral skewness is calculated as the third order mo-
ment of the power spectrum. It says something about the

symmetry of the distribution of the amplitude spectrum
values. A value of zero means that the distribution is
symmetric and a positive (respectively negative) value
means that the distribution has a tail at the higher (re-
spectively lower) values.

()
1

3

0
3

()

.

NF

i
i

P f
SpecSkewness

N

µ

σ

−

=

−
=
∑

• spectral rolloff
The spectral rolloff determines the lowest frequency at
which the accumulated sum of all lower frequency
power spectrum values reaches a certain fraction of the
total sum of the power spectrum. We used R = 0.85 as
rolloff fraction.

() ()
1

0 0

min .
j NF

j i i
i i

SpecRolloff

f P f R P f
−

= =

=

 
≥ 

 
∑ ∑

• spectral flatness
The spectral flatness is defined as the ratio of the geo-
metric mean to the arithmetic mean of the power spec-
trum. It is a measure of the flatness of the spectrum. Val-
ues near 1 are obtained for a flat spectrum and values
near 0 for a peaky spectrum.

1

0
1

0

()

1 ()

N
N i

i
N

i
i

P f
SpecFlatness

P f
N

−

=
−

=

=
∏

∑

• Mel frequency cepstral coefficients and deltas
MFCCs and their derivatives are a much-used low-
dimensional representation of the spectral content of an
audio signal (especially in speech-processing contexts).
We calculate MFCCs using the following FFT-based
method:

- apply window to signal fragment (audio frame)
- get normalized FFT magnitudes (squaring is op-

tional)
- apply triangular shaped Mel filter bank to FFT

magnitudes and sum (different FFT bin weightings
for each filter)

- apply log operator to filter outputs (optional)
- apply DCT (discrete cosine transform)

If we consider the MFCCs as zero order deltas, then the
higher order deltas are derived from the lower order
ones by applying one of the calculations below:

- deltas (WS = window size in samples):

()
1

2

1

.

2.

WS

i d i d
d

i WS

d

d c c
d

d

+ −
=

=

−
=
∑

∑

- simple deltas (d = fixed window size in samples):

2.
i d i d

i
c cd

d
+ −−

=

MFCCs and their higher order deltas are calculated
over a sliding frame with a fixed width (we use 20 ms
by default) moving from start to end of the segment
using a specific frame step (we use 10 ms by default).

We then calculate the mean and standard deviation for
each of the coefficients over all frames (the whole seg-
ment) and these values are stored in the feature vector.

By default, we use a Mel filter bank of 20 normalized
filters covering the entire frequency range; we use the
FFT amplitude spectrum (no squaring), apply a log op-
erator after the filter bank and only keep the first 12
coefficients. For the derivatives, we usually calculate
only the first and second order deltas (not simple del-
tas), with a delta window size of 2. So, with these de-
fault settings, this gives us a 12*3*2 = 72 values that are
added to the feature vector. Some work on optimizing
some of these MFCC parameters together with the con-
text length has been done in [6].

2.5 Feature vector classification

This stage applies a classification model computed by
the Support Vector Machine (SVM) inductive learning
method. The SVM is a data driven method that con-
structs a classifier that separates the data in a training set
with low error and large margin [7]. The SVMs are used
to make a decision about which drum types the extracted
feature vectors represent (if any). N binary classifiers are
used (where N = number of classes) since different drum
classes can (and will) occur at the same time. Both linear
and Gaussian kernels have been used successfully, but
the Gaussian ones consume more CPU power (which
might be important when using the algorithm in a real-
time context).

The free parameters for the SVM models (one for the
linear kernel, two for the Gaussian ones) are optimized
in the training phase using cross-validation over a pre-
labelled set of feature vectors extracted from annotated
audio files. These features are extracted around the on-
set times found in the annotations and are thus only de-
pendent on the feature extraction parameters. The train-
ing data is scaled to [-1,1] (scaling factors are stored in
a “scale file”) and SVM models are created from this
scaled data (each model is stored in a “model file”).

In the application phase, the classification is then
done for each drum type by first scaling each new test
vector using the stored scaling factors and then applying
the SVMs on each test vector using the stored models.

2.6 Streaming, causality and delays

This algorithm operates in a streaming way, which al-
lows us to process both very big audio files and never-
ending live audio streams. This implies that the audio
must be processed as it comes in, so we can't wait to
start processing until after we have read all audio sam-
ples (in fact, there is no such thing as "all audio samples"
when dealing with streams). This also means that things
like "normalizing by the maximum" are not possible and
need to be replaced by functionality working on the re-
cent past stored in circular buffers. This usually makes
the algorithms more adaptive to variations in the audio,
but also introduces a certain amount of "adaptation time"
and a (preferably small) delay. This delay is inherent to

all causal audio analysis systems: you can’t make a deci-
sion about something until after you have heard (at least
some part of) it. We did not yet try to incorporate meth-
ods to make predictions about the future based upon
analysis results from the (recent) past.

Both the onset detection stage and the feature extrac-
tion stage require a “working memory“ of several tens
of milliseconds. However, the overall delay of the drum
detection algorithm is determined by the maximum of
these two delays, rather than by the sum, as can be seen
in figure 8. Typical values are 80 ms for the feature ex-
traction (depends on the context length) and 105 ms for
the onset detection (depends mainly on the parameters
of the STFT and the heuristic grouping peak detection).
Extra internal buffering is done to synchronize the onset
detection and feature extraction streams.

3 DEVELOPED APPLICATIONS

3.1 Implementation

The algorithm and all of its components are imple-
mented in standard C++ and run on Windows and Linux.
Although the code is currently not optimized (both algo-
rithmically and technically), the complete algorithm does
work faster than real-time (with file output for interme-
diate results turned off): 16.3% of real-time on an Intel
Pentium 4, 3.2 GHz and 33.9% of real-time on an AMD
Athlon XP 1700+, 1.5 GHz.

Several third party libraries are being used: libsndfile
for sound file I/O [10], libsvm for the SVM functional-
ity [11], Div's Standard MIDI File API for MIDI file I/O
[12] and FFTReal for the fast Fourier transforms [13].
All these libraries have a license that facilitates com-
mercial use, in case this would ever be desired.

All software mentioned below can be found on the
public section of the MAMI project website [2].

now

future

onset

OD::ProcessFE::GetFeatureVector

past

FEDelay

ODDelay

ODDelay > FEDelay
total delay = ODDelay
FE needs extra buffering (amount = ODDelay - FEDelay)

now

future

onset

past

FEDelay

ODDelay

OD::Process FE::GetFeatureVector

ODDelay < FEDelay
total delay = FEDelay
OD needs extra buffering (amount = FEDelay - ODDelay)

now

future

onset

OD::ProcessFE::GetFeatureVector

past

FEDelay

ODDelay

ODDelay > FEDelay
total delay = ODDelay
FE needs extra buffering (amount = ODDelay - FEDelay)

now

future

onset

past

FEDelay

ODDelay

OD::Process FE::GetFeatureVector

ODDelay < FEDelay
total delay = FEDelay
OD needs extra buffering (amount = FEDelay - ODDelay)

Figure 8: Onset detection and feature extraction delays.

3.2 Console applications

In order to make the various stages of the drum detection
algorithm usable for non-programmers and for working
with a batch of audio files, several console applications
were developed that can be run from the command line.
These are the binaries that were submitted to the MIREX
2005 contest for evaluation. They are all file-based (in-
puts and outputs are sound files, MIDI files or text files)
and can be used either separately or chained together in a
batch file or script.

Apart from the applications for the three main stages
of the drum detection, there are also a few extra applica-
tions for extracting drum events from MIDI files, for
converting between different text-based annotation file
formats, for preparing the data files for the SVM train-
ing and for rendering the detected (or annotated) events
to an audio file for aural feedback. See figure 9 for an
overview.

3.3 Audio-to-MIDI application

All stages of the drum detection application phase are
also combined into a single monolithic console applica-
tion that takes in a mono sound file and produces a MIDI
file containing the detected drum events. Algorithm set-
tings can be specified using a parameter file, and the
mapping of the considered drum types to MIDI note
numbers is done through a MIDI drum label map. The
program can also process a list of sound files in one go
and an option to output ASCII drum event list files is
provided as well (which might be easier to import in
some programs). Parameter, model and scale files used
for the MIREX 2005 contest are provided as defaults.

3.4 Library

Finally, we are working on a C/C++ library to allow
third parties to incorporate the streaming drum detection
functionality in their own software.

4 EVALUATION AND RESULTS

4.1 Development data and test data

For the MIREX 2005 evaluation, three data sets of anno-
tated audio files were available. The data sets were
named after their providers: CD (Christian Dittmar from
Fraunhofer IDMT), MG (Masataka Goto from AIST [9])
and KT (Koen Tanghe from Ghent University [8]). In
short, all audio files are mono WAV PCM files at 44.1
kHz, having a duration varying from 30 s (music frag-
ments, KT and CD set) to several minutes (complete
songs, MG set). All audio files were annotated for three
drum types: bass drum (BD), snare drum (SD) and hihats
(HH). Out of the complete data set, 23 sound files (4
from the CD set, 9 from the KT set and 10 from the MG
set) with their corresponding annotation files were cho-
sen by the organizers as the development set, and these
files could be used by the participants as they pleased.
The rest of the data is kept as “test data” for the actual
evaluations. More details can be found on the MIREX
web pages [1].

4.2 Evaluation and results

The evaluation of the submitted algorithms is done by
comparing the list of detected drum events with the list
of annotated events (the ground truth). An F-measure
score (with equal importance to precision and recall) is
calculated for each drum type, resulting in three F-
measure scores and their average score. Only events
detected within a range of 30 ms around the ground truth
events times can be accepted as correct. To have an idea
about the processing power each algorithm requires, a
speed measure is calculated as well.

Overall results for our algorithm run on a 3 GHz Intel
Pentium 4 machine running Windows XP are shown in
table 1. Tables with separate results for each of the three
data sets and results for the other participants’ algo-
rithms can be found on the MIREX web pages [1].

Submission 3 4 1
Average Classification
F-measure

0.611 0.609 0.599

Overall Onset Precision % 63.30 62.57 60.02
Overall Onset Recall % 71.19 71.09 72.45
Overall Onset F-measure 0.67 0.666 0.657
BD Average F-measure 0.688 0.686 0.677
HH Average F-measure 0.601 0.59 0.588
SD Average F-measure 0.555 0.562 0.542
Runtime (s) 1337 1342 1350
Machine Y Y Y

Table 1: MIREX 2005 evaluation results.

We originally submitted 4 versions of our algorithm,
of which only 3 were retained by the organizers for the
evaluation. Version 1 uses RBF kernels for the SVM
models and onset detector parameters that had been pre-
viously optimized on the whole KT data set only (no
data from other MIREX participants) [8]. Version 3 is

Figure 9: Overview of the developed console applications.

output

input

output

input sound file MIDI file

occurrence file

feature file

SVM model filesSVM scale files

SVM data files

Training phase

DrumFeatureExtractionCA

DrumFeatureClassificationSVMCA

DrumDetectionResynthesisCA

DrumSVMDataFilePreparationCA

svm-scale

svm-train

scaled SVM data files

sound file

feature file

occurrence file

drum sound files

Application phase

sound file

DrumFeatureExtractionCA

onset file

DrumEventExtractionFromMIDICA DrumOnsetDetectionCA

Resynthesis

occurrence file

the same as version 1, but uses a minimum inter-onset
time of 100 ms (instead of 79 ms). Version 4 is the same
as version 1 but uses onset detector parameters that
were optimized on the MIREX development data set
only.

All our versions performed equally well and obtained
a main score of around 0.61 (for comparison: the main
score for the best algorithm was 0.67). Best results with
our algorithm were obtained for bass drums, followed
by hihats and then snare drums. A remarkable fact is
that all participants’ algorithms (save one) have their
highest scores for the MG data set, followed by the CD
data set and then the KT data set (always lowest).

5 FUTURE WORK
One of the items near the top of our “to do” list is setting
up an easy way to perform the training phase. Whereas
the application phase functionality has been wrapped in
a set of ready-to-use console applications and a global
audio-to-MIDI application, the training phase is cur-
rently implemented as a collection of Perl scripts that
find appropriate parameters automatically using standard
cross-validation techniques and a set of Matlab functions
for optimizing the onset detection parameters. A single
application where one specifies a set of audio files, the
corresponding set of MIDI annotation files and a drum
label map, would allow a user to adapt the system to a
particular type or style of music, which will always work
better than using a very generic model.

For offline use on sets of audio files, we would like
to investigate to what extend building “localized mod-
els” on a file-per-file basis improves the performance.

The algorithm also needs to be properly evaluated
with more than three drum types and the efficiency
should be further improved by optimizing both the algo-
rithm itself and its implementation.

Finally, we would also like to investigate if and how
this work could be used in music production systems
and real-time interactive multimedia systems, where
robustness, usability issues and processing latency play
an important role.

6 CONCLUSIONS
This paper presented the details of a real-time streaming
drum detection algorithm and its three main processing
stages, operating on “full” CD-quality music. Results of
an evaluation for three drum types performed in the con-
text of an international conference were reported, where
the algorithm was ranked second best (out of five). The
drum detection functionality is made available as a set of
console applications, an overall audio-to-MIDI applica-
tion and a C/C++ library, which can all be downloaded
from the MAMI project website [2].

ACKNOWLEDGEMENTS
This work was done in the context of the “Musical Au-
dio Mining” (MAMI) project, which is funded by the
Flemish Institute for the Promotion of Scientific and
Technological Research in Industry.

REFERENCES
[1] Music Information Retrieval Evaluation eXchange

(MIREX), http://www.music-ir.org/mirexwiki

[2] Musical Audio Mining (MAMI), Ghent University,
Belgium, http://www.ipem.ugent.be/MAMI

[3] D. Van Steelant, K. Tanghe, S. Degroeve, et al.
“Classification of Percussive Sounds Using
Support Vector Machines”, Proceedings of
Benelearn 2004, Brussels, Belgium, 2004

[4] D. Van Steelant, K. Tanghe, S. Degroeve, et al.
“Support Vector Machines for Bass and Snare
Drum Recognition”, Proceedings of GfKl 2004,
Dortmund, Germany, 2004

[5] O. Gillet and G. Richard “Drum track transcription
of polyphonic music using noise subspace
projection”, Proceedings of ISMIR 2005, London,
UK, 2005

[6] S. Degroeve, K. Tanghe, et al. “A Simulated
Annealing Optimization of Audio Features for
Drum Classification”, Proceedings of ISMIR 2005,
London, UK, 2005

[7] V. N. Vapnik, “The Nature of Statistical Learning
Theory”, Springer, 1995

[8] K. Tanghe, M. Lesaffre, S. Degroeve, et al.
“Collecting ground truth annotations for drum
detection in polyphonic music”, Proceedings of
ISMIR 2005, London, UK, 2005

[9] M. Goto, “Development of the RWC Music
Database”, Proceedings of ICASSP 2004,
Montreal, Canada, 2004

[10] E. de Castro Lopo, “libsndfile, a C library for
reading and writing files containing sampled
sound”, http://www.zip.com.au/~erikd/libsndfile

[11] C.-C. Chang and C.-J. Lin “libsvm, a library for
Support Vector Machines”,
http://www.csie.ntu.edu.tw/~cjlin/libsvm

[12] D. G. Slomin “Div's Standard MIDI File API”,
http://www.sreal.com:8000/~div/midi-utilities-for-
windows

[13] L. De Soras “FFTReal, a C++ class for computing
the FFT of vectors of real numbers and their
inverse FFT”, http://ldesoras.free.fr/prod.html

