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ABSTRACT 
This document describes an algorithm that tries to locate 
and label drum events in polyphonic musical audio. The 
three main parts of the algorithm are described in detail 
and an overview of the developed applications is given. 
Finally, the results of an evaluation performed in the 
context of the ISMIR2005 MIREX “contest” [1] are 
reported. 
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1 INTRODUCTION 
This research was started in the context of the Musical 
Audio Mining (MAMI) project [2]. In order to query 
databases of musical audio based on the musical content 
itself (which is what this project is about), one needs to 
have descriptions of that musical content. Transcribing 
the drums in a musical piece is therefore one possible 
way to obtain such a description. Obtaining melodic 
information is another one, but since drum sounds are 
very important in many popular music genres nowadays, 
we thought it would also be interesting to focus on this 
aspect of the music. Also, drum detection research has 
not gained as much attention over the last decades as 
melody extraction research, which makes it an even 
more interesting topic to study. 

Our earlier studies ([3],[4]) mainly dealt with only 
one particular aspect of the drum detection process or 
with drum detection in a more restricted environment, 
whereas this document describes the final overall sys-
tem that was also used for the audio drum detection 
track of the ISMIR2005 MIREX “contest” and works 
on “full” CD-quality music. 

The algorithm we developed can be categorized as a 
feature-based classification method. The algorithm used 
by Gillet and Richard [5] which also entered the 
MIREX “contest” is similar to our method in that it also 
performs onset detection, feature extraction and feature 
vector classification using Support Vector Machines. 
However, their method performs a band-wise noise sub-
space projection before the onset detection and feature 
extraction stages and it also uses an extra adaptation 
stage at the end that builds a “localized” model per au-
dio excerpt, which is then used to obtain a more special-
ized classification for that particular fragment. 

2 ALGORITHM DESCRIPTION 

2.1 Overall scheme 

This drum detection algorithm has an architecture con-
sisting of three main parts, which are shown in figure 1. 
The onset detection is the first stage. It locates moments 
in time where drum events might be present. The second 
stage is the feature extraction stage where features are 
extracted from the audio around the detected onsets. And 
finally the classification stage makes a decision for each 
onset (based on the extracted audio features) about 
which type of event is present at that location (drum 
event or not, and if so, which type of drum event). Each 
of these three stages is specified on the following pages.  

 

2.2 Training and application phase 

As we are using a supervised machine learning method, 
the overall methodology is actually split up in two 
phases: a “training phase” and an “application phase”. In 
order to use the drum detection algorithm on unseen 
audio in the application phase, it must first be trained 
during a training phase, in which it is fed with audio for 
which the drum events are known in advance. 

In this training phase, the user supplies pairs of sound 
files and corresponding MIDI files which contain a 
symbolic representation of the drum events that can be 
heard in the sound file. This means that for each rele-
vant drum event in the sound file, there is a MIDI note  
 
 

Figure 1: Overall architecture of the 
drum detection module. 
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on message at that moment and for that specific drum 
type on channel 10 in the MIDI file. The drum types 
represent abstract categories of drum sounds such as 
bass drums, snare drums etc… Each of these drum types 
gets a label (BD, SD, …) and there may be multiple 
MIDI note numbers that correspond to the same drum 
type. 

Obtaining the training audio and MIDI files is usu-
ally accomplished using two common methods. The 
first starts from an existing MIDI file, usually either a 
full MIDI file as can be found on the Internet, or a MIDI 
file from a music production project (programmed 
drums, or drums recorded on an electronic drum kit). 
The corresponding audio file is then obtained by re-
cording the audio output while playing back the MIDI 
file through various synthesizer instruments, possibly 
together with audio tracks containing additional voice or 
guitar recordings. 

The second method works the other way around and 
starts from the audio file, which is manually annotated 
using a combination of MIDI drum performance re-
cording and MIDI drum track editing. This can be done 
in a sequencer program where the audio file is put on an 
audio track, and a MIDI track is filled in by the annota-
tor who tries to imitate what he hears by placing drum 
events on that MIDI track [8]. While being more time-
consuming than the first method, this method can be 
applied to music for which the MIDI drum events are 
not readily available and allows us to work with music 
files that are of the same realistic quality as the ones the 
algorithm will operate on in the application phase. 

2.3 Onset detection 

2.3.1 Introduction 

Since the classification stage should be able to distin-
guish between drum events and non-drum events, we 
would rather have the onset detector detect too many 
onsets than too few. If the classifier is good enough, it 
should be able to throw out the non-drum events. Of 
course, there are limits: in the extreme case we could just 
feed the whole continuous stream of audio features to 
the classifier instead of first doing some onset detection, 
but that is very inefficient. And it might not even work 
well either: multiple drum events would most probably 
be detected around onset locations at the feature vector 
sample rate, so a mechanism to extract the exact event 
location from these multiple events would still be needed 
after all. Hence, the use of an onset detection stage was 
chosen. 

2.3.2 Splitting up the signal in different frequency bands 

First of all, the input signal is routed through a win-
dowed short term Fourier transform (of which we only 
use the amplitudes) and a triangular shaped Mel scale 
filter bank to obtain a multi-band spectral representation 
of the audio signal at a reduced sampling rate. The re-
sults for each frame step are stored in a circular buffer 
for consultation later on. 

2.3.3 Calculating amplitude changes 

For each of the N frequency bands, a weighted sum of 
the differences between the current amplitude level and 
that of the recent past is calculated. More recent values 
have a higher importance than older ones. The N outputs 
of the Mel filter bank are also processed by an envelope 
follower, which roughly follows the overall shape of the 
amplitude fluctuations over a longer period of time. By 
dividing the weighted differences by the corresponding 
envelope follower outputs, we obtain a relative differ-
ence value for each frequency band, which is a measure 
for the amount of energy change in that band. Figure 2 
shows the processing scheme up to this point. 

 
2.3.4 Making decisions 

Method 1 
In this method, the relative differences in each fre-
quency band are summed together and divided by the 
number of bands. This one-dimensional stream of 
summed relative differences is then sent through a mod-
ule that decides whether an onset occurs at this moment 
or not. An explanation of the heuristics on which this 
decision is based can be found below. The (simple) 
scheme for this decision method is shown in figure 3 on 
the left. 
 
Method 2 
In this method, the relative differences in each fre-
quency band are first sent through a peak detector that 
just checks if a local maximum has occurred in any of 
the bands. If this is the case, an additional check is done 
to see if that maximum is strong enough (higher than a 
threshold value) to be kept. For each time step, this re-
sults in a Boolean vector for which a "true" means that a 
strong peak occurred in the corresponding frequency 
band. Just like in method 1, this (now multidimensional) 
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Figure 2: Calculation of amplitude changes. 



   
 

 

result is then sent through a module that decides 
whether or not an onset really occurred. See figure 3 for 
the scheme of this method. 

 
Heuristic grouping peak detector 
This processing block is rather important because it 
needs to make the final decision about whether or not an 
onset occurred, based on the recent history of relevant 
peaks (in different bands for method 2). Because peaks 
in different frequency bands often do not occur at the 
exact same moment in time, and do not always lead to a 
single overall peak, we need to use some heuristics in 
order to make a more robust decision. The processing 
scheme is shown in figure 4. 

First, all elements of the input vector are summed to-
gether and the sum is stored in a circular buffer (in case 

of a Boolean vector, 1 is used for "true" and 0 for 
"false"). Then the sum of these sums over a certain pe-
riod in the past is calculated and stored in another circu-
lar buffer. For method 2, this effectively comes down to 
counting the number of relevant peaks over all fre-
quency bands in the last x milliseconds. This stream of 
values is sent through a peak detector that outputs "true" 
if a local maximum is reached or "false" if not. If a local 
maximum has occurred, we check if the peak value is 
above a certain threshold, and if the level has up to now 
been below a certain hysteresis level. This hysteresis is 
added to alleviate the well-known problem encountered 
with simple thresholding where small fluctuations 
around the threshold level may cause multiple on/off 
triggers. The result is stored in a circular buffer (the 
"peak candidate buffer"). 

Up to here, we have been dealing with a single pos-
sible new peak candidate. From here on, we will be 
dealing with the set of buffered peak candidates and try 
to find out if a peak at the end of the buffer (which oc-
curred some time ago) is indeed a final peak or not. To 
do that, we extract the oldest value from the "peak can-
didate buffer" and check its value. If this is "false", we 
output "false" and hence decide "no onset" at that mo-
ment in time (note that this moment lays in the past, so 
we have a delay here). If this is "true", we check if there 
are more recent peaks that are higher than the one we 
are considering. If this is the case, we decide "no onset" 
at that moment in time. If this is not the case, we set all 
more recent peaks to "false" (thus eliminating them as 
possible future onsets), and decide "onset" at that mo-
ment in time. 

To summarize: 
- the sum of all channels over a specified group-

ing period is calculated 
- only peaks in this sum higher than a threshold 

value are considered 
- after a detected peak, the calculated sum must 

decrease below a certain hysteresis level before 
a new peak can be detected 

- a minimum time interval between two successive 
peaks is specified and within this period, the 
highest peak is withheld 

So as the final output of the onset detector, we get a 
continuous stream of Boolean values where a "true" 
means that an onset has occurred a fixed amount of time 
in the past (this fixed delay is on the order of 40 to 100 
ms, adjustable by the user). 

2.4 Feature extraction 

2.4.1 Introduction 

We assume that a fixed amount of audio data following a 
potential drum onset (detected in the first stage) contains 
enough information necessary to make a valid decision 
in the last (classification) stage. The feature extraction 
stage reduces the raw audio samples from this context to 
a more compact and more meaningful representation of 
the audio content, by calculating some properties that are 
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thought to be relevant for discriminating different types 
of percussive sounds. 

The module receives a continuous stream of audio 
samples and always performs some light processing on 
this stream (no matter whether an onset was detected or 
not). This only involves DC-blocking, very low level 
noise addition (to avoid numerical instability problems) 
and 3 band filtering (if needed for the requested fea-
tures). Results are stored in circular buffers that are big 
enough to hold at least a number of values correspond-
ing to the context length (CL) over which features 
should be extracted (specified as a duration in seconds). 

At any time, the module can be asked to extract a fea-
ture vector, which is calculated over the buffered data 
and hence corresponds to a segment of length CL and 
starting at now - CL. This means that if at a certain time 
T an onset is reported by the onset detection stage, the 
request to calculate a feature vector should be delayed 
by CL so that the segment that is used when the calcula-
tions are performed effectively contains all samples over 
a duration of CL starting at T and ending at T + CL (see 
figure 5). 

All N features are represented by one or more real 
values, and are combined into a single feature vector, so 
for each onset from stage 1, there is a feature vector of 
length N corresponding to an audio segment starting at 
the onset time and ending at the onset time + CL. The 
extracted audio features are explained in detail below. 

2.4.2 Extracted features 

• RMS in the overall signal 
This is simply a basic measure for the overall sound 
level of the audio and is calculated as the root-mean 
square value of all samples in the segment, in dB. 
Here N is the number of samples in the segment, and ix  
is the i -th sample of the segment: 
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• RMS in 3 frequency bands 
When inspecting the accumulated spectra of hundreds of 
bass drums, snare drums and hihats, it can be seen that 
the spectral energy distributions of these different 
sounds are located in more or less distinct frequency 
bands, although not completely separated (see figure 6). 
Hence we divided the spectrum into three frequency 
bands and computed energy-related features over these 

bands. The filters are simple Butterworth filters and 
were designed using Matlab's buttord and butter func-
tions (the amplitude response of these filters is shown in 
figure 7): 
 
fs = 44100; 
[Ord,Wn] = buttord([49 50]/(fs/2),[0.01 
2000]/(fs/2),0.01,62); 
[B{1},A{1}] = butter(Ord,Wn); 
[Ord,Wn] = buttord([200 201]/(fs/2),[1 
1300]/(fs/2),0.01,20); 
[B{2},A{2}] = butter(Ord,Wn); 
[Ord,Wn] = buttord([5100 16300]/(fs/2),[65 
22000]/(fs/2),0.05,60); 
[B{3},A{3}] = butter(Ord,Wn); 

 
For each of the three filtered signals, RMS is again 

calculated as was done for the overall RMS, yielding 
RMSb1, RMSb2 and RMSb3: one RMS value for each 
band. 

 
Figure 6: Accumulated amplitide spectra for different drum 
types. 

 
Figure 7: Amplitude response of the three drum filters. 

• RMS per band relative to overall RMS 
Since the contribution of the 3 frequency bands to the 
overall sound level can be more interesting than the ab-
solute levels, we also calculate relative levels as follows: 

 
RMSb1Rel = RMSb1 - RMS 
RMSb2Rel = RMSb2 - RMS 
RMSb3Rel = RMSb3 - RMS 

Figure 5: Calculation of features over a fixed context. 
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• RMS per band relative to RMS of other bands 
The differences in sound level between the different 
frequency bands are also calculated: 
 

RMSbRelComb12 = RMSb1 - RMSb2 
RMSbRelComb13 = RMSb1 - RMSb3 
RMSbRelComb23 = RMSb2 - RMSb3 

 
• zero-crossing rate 
This feature reports the number of times the signal 
changes sign per second. To avoid obtaining high values 
only due to noise, we use a zero-tolerance level of -60 
dB, which means that only zero-crossings that go from 
-ZT to +ZT (or vice versa) are taken into account as 
genuine zero crossings (ZT = 0.001 in this case). 
 
• crest factor 
The crest factor is calculated as the ratio between the 
maximum absolute value of the signal and its RMS 
value. The crest factor of a musical signal is known to be 
much higher than for a speech signal. 

( )max
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=  

• temporal centroid 
The temporal centroid is calculated as the centre of grav-
ity of the distribution of the power values of the samples 
in the segment. The lower this is, the more energy is 
located at the beginning of the segment (and vice versa). 
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• spectral centroid 
This is calculated as the centre of gravity of the power 
spectrum. Roughly speaking, the lower this is, the more 
energy is located in the lower frequency components 
(and vice versa). 

( )

( )

1

0
1

0

.
NF

i i
i
NF

i
i

f P f
SpecCentroid

P f

−

=
−

=

=
∑

∑

 

• spectral kurtosis 
Spectral kurtosis is calculated as the fourth order mo-
ment of the power spectrum, offset by -3. It says some-
thing about the size of the tails of the distribution of the 
amplitude spectrum values. Distributions with relatively 
large tails have positive kurtosis, distributions with small 
tails have negative kurtosis, and normal distributions 
have zero kurtosis. In the following formula, µ = mean 
and σ = standard deviation: 
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• spectral skewness 
Spectral skewness is calculated as the third order mo-
ment of the power spectrum. It says something about the 

symmetry of the distribution of the amplitude spectrum 
values. A value of zero means that the distribution is 
symmetric and a positive (respectively negative) value 
means that the distribution has a tail at the higher (re-
spectively lower) values. 
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• spectral rolloff 
The spectral rolloff determines the lowest frequency at 
which the accumulated sum of all lower frequency 
power spectrum values reaches a certain fraction of the 
total sum of the power spectrum. We used R = 0.85 as 
rolloff fraction. 
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• spectral flatness 
The spectral flatness is defined as the ratio of the geo-
metric mean to the arithmetic mean of the power spec-
trum. It is a measure of the flatness of the spectrum. Val-
ues near 1 are obtained for a flat spectrum and values 
near 0 for a peaky spectrum. 
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• Mel frequency cepstral coefficients and deltas 
MFCCs and their derivatives are a much-used low-
dimensional representation of the spectral content of an 
audio signal (especially in speech-processing contexts). 
We calculate MFCCs using the following FFT-based 
method: 

- apply window to signal fragment (audio frame) 
- get normalized FFT magnitudes (squaring is op-

tional) 
- apply triangular shaped Mel filter bank to FFT 

magnitudes and sum (different FFT bin weightings 
for each filter) 

- apply log operator to filter outputs (optional) 
- apply DCT (discrete cosine transform) 

If we consider the MFCCs as zero order deltas, then the 
higher order deltas are derived from the lower order 
ones by applying one of the calculations below: 

- deltas (WS = window size in samples): 
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- simple deltas ( d = fixed window size in samples): 
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MFCCs and their higher order deltas are calculated 
over a sliding frame with a fixed width (we use 20 ms 
by default) moving from start to end of the segment 
using a specific frame step (we use 10 ms by default). 



   
 

 

We then calculate the mean and standard deviation for 
each of the coefficients over all frames (the whole seg-
ment) and these values are stored in the feature vector. 

By default, we use a Mel filter bank of 20 normalized 
filters covering the entire frequency range; we use the 
FFT amplitude spectrum (no squaring), apply a log op-
erator after the filter bank and only keep the first 12 
coefficients. For the derivatives, we usually calculate 
only the first and second order deltas (not simple del-
tas), with a delta window size of 2. So, with these de-
fault settings, this gives us a 12*3*2 = 72 values that are 
added to the feature vector. Some work on optimizing 
some of these MFCC parameters together with the con-
text length has been done in [6]. 

2.5 Feature vector classification 

This stage applies a classification model computed by 
the Support Vector Machine (SVM) inductive learning 
method. The SVM is a data driven method that con-
structs a classifier that separates the data in a training set 
with low error and large margin [7]. The SVMs are used 
to make a decision about which drum types the extracted 
feature vectors represent (if any). N binary classifiers are 
used (where N = number of classes) since different drum 
classes can (and will) occur at the same time. Both linear 
and Gaussian kernels have been used successfully, but 
the Gaussian ones consume more CPU power (which 
might be important when using the algorithm in a real-
time context). 

The free parameters for the SVM models (one for the 
linear kernel, two for the Gaussian ones) are optimized 
in the training phase using cross-validation over a pre-
labelled set of feature vectors extracted from annotated 
audio files. These features are extracted around the on-
set times found in the annotations and are thus only de-
pendent on the feature extraction parameters. The train-
ing data is scaled to [-1,1] (scaling factors are stored in 
a “scale file”) and SVM models are created from this 
scaled data (each model is stored in a “model file”).  

In the application phase, the classification is then 
done for each drum type by first scaling each new test 
vector using the stored scaling factors and then applying 
the SVMs on each test vector using the stored models. 

2.6 Streaming, causality and delays 

This algorithm operates in a streaming way, which al-
lows us to process both very big audio files and never-
ending live audio streams. This implies that the audio 
must be processed as it comes in, so we can't wait to 
start processing until after we have read all audio sam-
ples (in fact, there is no such thing as "all audio samples" 
when dealing with streams). This also means that things 
like "normalizing by the maximum" are not possible and 
need to be replaced by functionality working on the re-
cent past stored in circular buffers. This usually makes 
the algorithms more adaptive to variations in the audio, 
but also introduces a certain amount of "adaptation time" 
and a (preferably small) delay. This delay is inherent to 

all causal audio analysis systems: you can’t make a deci-
sion about something until after you have heard (at least 
some part of) it. We did not yet try to incorporate meth-
ods to make predictions about the future based upon 
analysis results from the (recent) past. 

Both the onset detection stage and the feature extrac-
tion stage require a “working memory“ of several tens 
of milliseconds. However, the overall delay of the drum 
detection algorithm is determined by the maximum of 
these two delays, rather than by the sum, as can be seen 
in figure 8. Typical values are 80 ms for the feature ex-
traction (depends on the context length) and 105 ms for 
the onset detection (depends mainly on the parameters 
of the STFT and the heuristic grouping peak detection). 
Extra internal buffering is done to synchronize the onset 
detection and feature extraction streams. 

3 DEVELOPED APPLICATIONS 

3.1 Implementation 

The algorithm and all of its components are imple-
mented in standard C++ and run on Windows and Linux. 
Although the code is currently not optimized (both algo-
rithmically and technically), the complete algorithm does 
work faster than real-time (with file output for interme-
diate results turned off): 16.3% of real-time on an Intel 
Pentium 4, 3.2 GHz and 33.9% of real-time on an AMD 
Athlon XP 1700+, 1.5 GHz. 

Several third party libraries are being used: libsndfile 
for sound file I/O [10], libsvm for the SVM functional-
ity [11], Div's Standard MIDI File API for MIDI file I/O 
[12] and FFTReal for the fast Fourier transforms [13]. 
All these libraries have a license that facilitates com-
mercial use, in case this would ever be desired. 

All software mentioned below can be found on the 
public section of the MAMI project website [2]. 
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3.2 Console applications 

In order to make the various stages of the drum detection 
algorithm usable for non-programmers and for working 
with a batch of audio files, several console applications 
were developed that can be run from the command line. 
These are the binaries that were submitted to the MIREX 
2005 contest for evaluation. They are all file-based (in-
puts and outputs are sound files, MIDI files or text files) 
and can be used either separately or chained together in a 
batch file or script. 

Apart from the applications for the three main stages 
of the drum detection, there are also a few extra applica-
tions for extracting drum events from MIDI files, for 
converting between different text-based annotation file 
formats, for preparing the data files for the SVM train-
ing and for rendering the detected (or annotated) events 
to an audio file for aural feedback. See figure 9 for an 
overview. 

3.3 Audio-to-MIDI application 

All stages of the drum detection application phase are 
also combined into a single monolithic console applica-
tion that takes in a mono sound file and produces a MIDI 
file containing the detected drum events. Algorithm set-
tings can be specified using a parameter file, and the 
mapping of the considered drum types to MIDI note 
numbers is done through a MIDI drum label map. The 
program can also process a list of sound files in one go 
and an option to output ASCII drum event list files is 
provided as well (which might be easier to import in 
some programs). Parameter, model and scale files used 
for the MIREX 2005 contest are provided as defaults. 

3.4 Library 

Finally, we are working on a C/C++ library to allow 
third parties to incorporate the streaming drum detection 
functionality in their own software. 

4 EVALUATION AND RESULTS 

4.1 Development data and test data 

For the MIREX 2005 evaluation, three data sets of anno-
tated audio files were available. The data sets were 
named after their providers: CD (Christian Dittmar from 
Fraunhofer IDMT), MG (Masataka Goto from AIST [9]) 
and KT (Koen Tanghe from Ghent University [8]). In 
short, all audio files are mono WAV PCM files at 44.1 
kHz, having a duration varying from 30 s (music frag-
ments, KT and CD set) to several minutes (complete 
songs, MG set). All audio files were annotated for three 
drum types: bass drum (BD), snare drum (SD) and hihats 
(HH). Out of the complete data set, 23 sound files (4 
from the CD set, 9 from the KT set and 10 from the MG 
set) with their corresponding annotation files were cho-
sen by the organizers as the development set, and these 
files could be used by the participants as they pleased. 
The rest of the data is kept as “test data” for the actual 
evaluations. More details can be found on the MIREX 
web pages [1]. 

4.2 Evaluation and results 

The evaluation of the submitted algorithms is done by 
comparing the list of detected drum events with the list 
of annotated events (the ground truth). An F-measure 
score (with equal importance to precision and recall) is 
calculated for each drum type, resulting in three F-
measure scores and their average score. Only events 
detected within a range of 30 ms around the ground truth 
events times can be accepted as correct. To have an idea 
about the processing power each algorithm requires, a 
speed measure is calculated as well. 

Overall results for our algorithm run on a 3 GHz Intel 
Pentium 4 machine running Windows XP are shown in 
table 1. Tables with separate results for each of the three 
data sets and results for the other participants’ algo-
rithms can be found on the MIREX web pages [1]. 

 
Submission 3 4 1 
Average Classification  
F-measure 

0.611 0.609 0.599 

Overall Onset Precision % 63.30 62.57 60.02 
Overall Onset Recall % 71.19 71.09 72.45 
Overall Onset F-measure 0.67 0.666 0.657 
BD Average F-measure 0.688 0.686 0.677 
HH Average F-measure 0.601 0.59 0.588 
SD Average F-measure 0.555 0.562 0.542 
Runtime (s) 1337 1342 1350 
Machine Y Y Y 

Table 1: MIREX 2005 evaluation results. 

We originally submitted 4 versions of our algorithm, 
of which only 3 were retained by the organizers for the 
evaluation. Version 1 uses RBF kernels for the SVM 
models and onset detector parameters that had been pre-
viously optimized on the whole KT data set only (no 
data from other MIREX participants) [8]. Version 3 is 

Figure 9: Overview of the developed console applications.
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the same as version 1, but uses a minimum inter-onset 
time of 100 ms (instead of 79 ms). Version 4 is the same 
as version 1 but uses onset detector parameters that 
were optimized on the MIREX development data set 
only. 

All our versions performed equally well and obtained 
a main score of around 0.61 (for comparison: the main 
score for the best algorithm was 0.67). Best results with 
our algorithm were obtained for bass drums, followed 
by hihats and then snare drums. A remarkable fact is 
that all participants’ algorithms (save one) have their 
highest scores for the MG data set, followed by the CD 
data set and then the KT data set (always lowest). 

5 FUTURE WORK 
One of the items near the top of our “to do” list is setting 
up an easy way to perform the training phase. Whereas 
the application phase functionality has been wrapped in 
a set of ready-to-use console applications and a global 
audio-to-MIDI application, the training phase is cur-
rently implemented as a collection of Perl scripts that 
find appropriate parameters automatically using standard 
cross-validation techniques and a set of Matlab functions 
for optimizing the onset detection parameters. A single 
application where one specifies a set of audio files, the 
corresponding set of MIDI annotation files and a drum 
label map, would allow a user to adapt the system to a 
particular type or style of music, which will always work 
better than using a very generic model. 

For offline use on sets of audio files, we would like 
to investigate to what extend building “localized mod-
els” on a file-per-file basis improves the performance. 

The algorithm also needs to be properly evaluated 
with more than three drum types and the efficiency 
should be further improved by optimizing both the algo-
rithm itself and its implementation. 

Finally, we would also like to investigate if and how 
this work could be used in music production systems 
and real-time interactive multimedia systems, where 
robustness, usability issues and processing latency play 
an important role. 

6 CONCLUSIONS 
This paper presented the details of a real-time streaming 
drum detection algorithm and its three main processing 
stages, operating on “full” CD-quality music. Results of 
an evaluation for three drum types performed in the con-
text of an international conference were reported, where 
the algorithm was ranked second best (out of five). The 
drum detection functionality is made available as a set of 
console applications, an overall audio-to-MIDI applica-
tion and a C/C++ library, which can all be downloaded 
from the MAMI project website [2]. 
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