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Abstract
This paper deals with the transcription of vocal melodies
in music recordings. The proposed system relies on two
distinct pitch estimators which exploit characteristics of the
human singing voice. A Hidden Markov Model (HMM) is
used to fuse the pitch estimates and make voicing decisions.
The resulting performance is evaluated on the MIREX 2006
Audio Melody Extraction data.
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1. Introduction
A key goal of digital music research is the automatic tran-
scription of polyphonic music recordings. Systems seeking
to perform full transcription have met with limited success
so far. Higher transcription accuracy has been obtained by
systems seeking to perform only a partial transcription con-
sisting of the chord sequence, the drum track or the melody.

The melody of a piece of music is generally defined as
the sequence of notes played by the lead instrument, but this
leaves considerable ambiguity since the factors determin-
ing which instrument is the “lead” to a human listener are
somewhat subjective and ill-defined. The fact that the raw
pitch accuracy scores reported in the MIREX 2005 Audio
Melody Extraction evaluation were considerably lower than
for monophonic recordings suggests that the systems en-
tered struggled to consistently identify the lead instrument.

In this paper, we aim to avoid this ambiguity by focusing
on the case where melody is carried by the main vocal line,
which is better defined objectively. Unlike standard tran-
scription systems based on a single pitch estimator, the pro-
posed system relies on two distinct pitch estimators which
exploit characteristics of the human singing voice. A HMM
is used to produce the final transcription by fusing the pitch
estimates and making voicing decisions.

Useful voice characteristics are described in Section 2,
followed in Section 3 by details of the system’s design. The
resulting performance is evaluated in Section 4 and conclu-
sions are given in Section 5.
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2. Characteristics of the human singing voice
To avoid transcribing non-vocal instruments, the proposed
system exploits two salient characteristics of singing voice:
pitch instability and high-frequency dominance.

2.1. Pitch instability
Pitch instability refers to the property of the singing voice
that its pitch varies considerably over time compared with
other pitched instruments. This is mostly due to the fact
that vibrato typically exhibits an extent of ±60–200 cents
for singing voice and only ±20–35 cents for other instru-
ments [1]. Also, vocalists almost always sing legato, chang-
ing pitch smoothly during note attacks and transitions.

This characteristic has been exploited recently by a vo-
cal detection system [2]. After identification of the musical
key, the system filters the input audio by an inverse comb
filter which attenuates all the harmonic partials of the seven
notes in the key. Since vocal notes are rarely at exactly the
intended pitch, their partials survive this process while other
pitched instruments are attenuated.

2.2. High-frequency dominance
High-frequency dominance refers to the property of the sin-
ging voice that the power of its upper partials is larger than
with other instruments. This has been observed in a study
on vocal melody transcription [3], where the high frequency
(over 800Hz) channels of a correlogram led to more accurate
vocal pitch estimates than the low frequency channels.

We further investigated this effect in [4]. Figure 1 shows
the minimum, mean and maximum reliability of correlo-
gram channels for the estimation of vocal pitch over a range
of recordings, where reliability is defined as the proportion
of resulting pitch estimates within 50 cents of the ground
truth. The recordings used were the nine training files for
the MIREX 2005 Audio Melody Extraction evaluation fea-
turing singing voice as lead instrument. The figure demon-
strates that channels in the 3–15kHz range provide more re-
liable vocal pitch estimates than other channels.

3. Proposed System
Experimentally, the voice characteristics described above
are difficult to combine into a single standard pitch estima-
tor. Therefore we adopt a novel approach for melody tran-
scription, in which multiple transcriptions produced by par-
allel estimators are fused into a single transcription, hope-
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Figure 1. Reliability of correlogram frequency channels
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Figure 2. Diagram of the proposed system

fully more accurate than using any one of the estimators. In
the following, two pitch estimators are used, but the system
design and the fusion method generalise to a larger number
of estimators.

The system diagram is shown in Figure 2. The input au-
dio is processed by two pitch estimators, each producing a
series of pitch estimates and associated reliability measures
at 10 ms intervals. These values are then input to a HMM
system to produce a single series of pitch estimates, with
unvoiced segments represented by 0 Hz estimates.

3.1. Semitone-cancellation & TWM
The first vocal pitch estimator consists of a pre-processing
stage in which a semitone-cancellation procedure empha-
sises the vocals, followed by the standard Two-Way Mis-
match (TWM) [5] monophonic pitch transcription algorithm.

3.1.1. Semitone-cancellation procedure
Experimentally, we found that the non-vocal cancellation
procedure proposed in [2] was too destructive of vocal pitch
and did not allow accurate pitch estimation. Thus, instead of
eliminating all the harmonic partials of interfering notes, we
eliminate fundamental frequencies only. Since most music
contains notes not in the musical key, the key detection stage
is discarded and all semitone notes are eliminated. Based on
the relative vibrato extent of vocals and other instruments
(see Section 2.1), the bandwidth of the cancellation filters
is set to ±20 cents. This process is implemented in the fre-
quency domain by zeroing suitable FFT bins [4]. Since most
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Figure 3. Pitch estimates after semitone-cancellation

partials of non-vocal notes survive this procedure, the output
is finally bandpass-filtered to 300–2000Hz, which roughly
corresponds to the pitch range of the human singing voice.

3.1.2. Pitch estimation by TWM
Informal listening tests show that the output of the semitone
cancellation procedure is generally dominated by vocals,
with components from other instruments being unpitched or
much quieter. Thus it is feasible to transcribe vocal pitch
by passing this output to a monophonic transcription algo-
rithm. This algorithm should favour predominant partials
on voiced frames to achieve high pitch accuracy. Since the
fusion system (see Section 3.3) favours pitch continuity, it
should also produce scattered pitch estimates on unvoiced
frames to achieve high voicing detection accuracy. The TWM
algorithm was chosen, as it offers a good compromise be-
tween these two objectives 1 . Other algorithms were found
to generally transcribe weak instrumental notes on unvoiced
frames [4], as illustrated in Figure 3.

3.1.3. Reliability measure
In order to assess which TWM pitch estimates are likely to
be correct, each estimate is further associated with a relia-
bility measure. This measure is obtained simply by mapping
the TWM error [5] linearly to the interval [0, 1].

3.2. High-frequency correlogram
The second vocal pitch estimator consists of a correlogram-
based monophonic pitch transcription algorithm using only
certain channels where the voice is likely to be predominant.

3.2.1. Correlogram design
The input audio is filtered by a 50-channel gammatone fil-
terbank spanning the range 100Hz–22kHz 2 . The unbiased
autocorrelation function (ACF) of each channel is computed
in 50ms frames at 10ms intervals. The predominant pitch is
then estimated in each channel and each frame by summing

1 We used the implementation described in U. Zölzer, editor. DAFX :
Digital Audio Effects. Wiley, 2002.

2 This filterbank was implemented using the Auditory Toolbox available
at http://cobweb.ecn.purdue.edu/˜malcolm/interval/1998-010/



the ACF value at the first three multiples of each integer lag
in the singing voice range (1–12.5 ms) and picking the lag
resulting in the largest sum. We found this method more
reliable than full harmonic comb matching of the ACF.

3.2.2. High-frequency bias

Based on the channel reliability measures computed in Sec-
tion 2.2, only 19 correlogram channels in the range 3–15kHz
are used. The vocal pitch is then estimated for each time
frame by clustering together channel-wise pitch estimates
within 50 cents of each other and selecting the cluster with
largest population. Experimentally, this approach provides
the desired behaviour of accurate pitch estimates on voiced
frames and scattered estimates on unvoiced frames. Other
transcription algorithms applied to the input audio bandpass-
filtered to 3–15kHz also produced scattered estimates on un-
voiced frames, but achieved lower pitch accuracy [4].

3.2.3. Reliability measure

As above, each estimate is associated with a reliability mea-
sure. In this case, we wish to mark estimates as reliable
when there is a strong consensus among correlogram chan-
nels. Thus reliability is defined as the proportion of channel-
wise estimates belonging to the selected cluster.

3.3. Modified HMM
The fusion system is based on a HMM in which the hidden
states represent the exact pitch sung, and the observed data
are the pitch estimates and reliability measures from the two
estimators described above. The Viterbi algorithm is used to
produce the output transcription.

3.3.1. Dynamic state generation

Rather than defining an infinite number of hidden states to
model continuous frequency, the states of the HMM are de-
fined dynamically based on the input pitch estimates. With
K pitch estimates {ek,t}1≤k≤K at time t, the set of (K +1)
states is defined by Ωt = {ωj,t}0≤j≤K where

ωj,t =

{
unvoiced if j = 0,

ej,t if 1 ≤ j ≤ K.
(1)

The notations ωj,t and ej,t refer both to states and observa-
tions and to their assigned frequency values. The proposed
system uses two pitch estimators, and so K = 2.

To avoid transcription errors when both estimators briefly
fail, an additional dummy state is generated at time t for
each state at t−1 for which there is no nearby estimate at t.
More precisely, a state with frequency ωj,t−1 is added to Ωt

if there is no k for which ek,t is within 50 cents of ωj,t−1.
A pruning process is introduced in the Viterbi algorithm to
prevent such states persisting indefinitely [4].
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Figure 4. Distributions of High-Frequency Correlogram relia-
bility measures

3.3.2. Observation probabilities
Unlike previous post-processing HMM systems [6], the pro-
posed system considers all pitch estimates {ek,t}1≤k≤K and
reliability measures {rk,t}1≤k≤K when calculating the ob-
servation probability of a given state ωj,t, defined by

P ({ek,t}1≤k≤K , {rk,t}1≤k≤K | ωj,t)

=
K∏

k=1

P (ek,t, rk,t | ωj,t). (2)

Each per-estimate observation probability P (ek,t, rk,t | ωj,t)
is calculated using one of three probability distributions spe-
cific to the corresponding estimator k, depending on whether
the state is voiced or unvoiced and whether the difference
d = 1200 × | log2(ωj,t/ek,t)| between state and estimate
frequencies is larger than 50 cents:

P (ek,t, rk,t | ωj,t)

=


P1,k(rk,t) if j = 0,
P2,k(rk,t) if j 6= 0 and d ≤ 50,

P3,k(rk,t) if j 6= 0 and d > 50.

(3)

These distributions were learnt by applying the two pitch
estimators to the nine training recordings mentioned in Sec-
tion 2.2 and forming histograms of the resulting reliability
measures. The distributions for the high-frequency correl-
ogram estimator are shown in Figure 4 and those for the
semitone-cancellation-TWM estimator have similar shape.
It can be seen that the reliability measures are generally low
on unvoiced frames and for incorrect pitch estimates, but
higher for correct pitch estimates.

3.3.3. Transition probabilities
Transition probabilities between voiced states are modelled
using a combination of Gaussians with variances of 50 and
100 cents representing the variation in pitch during a note



Table 1. Summary evaluation for 19 30-second test recordings

System
Voicing False d-prime Raw Pitch Raw Chroma Overall
Recall Alarm Measure Accuracy Accuracy Accuracy

HF Corr. 58% 17% 1.20 59% 63% 63%
SC/TWM 68% 29% 1.00 56% 67% 58%
Proposed 71% 24% 1.25 71% 77% 67%

and between successive notes respectively. Other transition
probabilities are estimated from the ground truth transcrip-
tions for the training set. The transition probability from
state ωi,t−1 to state ωj,t is therefore defined as

P (ωj,t | ωi,t−1)

=


0.97 i=0, j =0,

0.03× 1
|Ωt|−1 , i=0, j 6=0,

0.014 i 6=0, j =0,

ci,t×(0.936×e
−d2
100 + 0.05×e

−d2
200 ), i 6=0, j 6=0

(4)

where d = 1200 × | log2(ωj,t/ωi,t−1)| denotes the pitch
difference in cents and ci,t is a normalisation factor chosen
such that the transition probabilities sum to one.

4. Evaluation
The proposed system was first tested on 19 30-second ex-
tracts covering a wide range of genres and instrumentations,
and evaluated according to the criteria used in the MIREX
2005 Audio Melody Extraction task. For comparison, the
two pitch estimators were tested individually by running the
HMM with a single set of pitch estimates. The results for
the three systems are shown in Table 1. It can be seen
that the proposed system considerably outperforms either
single-estimate system, with a better d-prime value for voic-
ing detection and substantially higher pitch accuracy. This
demonstrates that there is a benefit to using multiple pitch
estimators in parallel, and that the modified HMM system is
a suitable fusion method.

The system was also entered for the MIREX 2006 Melody
Extraction Task, with results being compiled for vocal melod-
ies, non-vocal melodies, and all melodies. In the case of
vocal melodies (see Table 2), the system achieved a simi-
lar transcription accuracy as above, ranking it third out of
five in both categories. The same test set was used in 2005
and when vocal melody results are compiled for the 2005
systems also, the proposed system ranks 4/15 for raw pitch
accuracy and 5/15 for overall accuracy.

The voicing performance was better than during previ-
ous testing, achieving a d-prime measure of 1.74, compared
with the top-scoring system’s d-prime measure of 1.75. The
system’s specialisation for vocal melodies is demonstrated
well by the results for non-vocal melodies, where both voic-
ing and pitch estimation performance fall considerably, and
overall accuracy drops to around 30%.

Table 2. MIREX 2006 results - Vocal Melodies

System
Voicing False d-prime Raw Pitch Raw Chroma Overall
Recall Alarm Measure Accuracy Accuracy Accuracy

Dressler 85.5% 28.7% 1.62 78.5% 81.6% 73.7%
Ryynänen 77.0% 15.6% 1.75 75.7% 76.9% 72.5%
Sutton 71.8% 12.3% 1.74 70.7% 71.6% 67.3%
Poliner 93.7% 44.3% 1.68 69.1% 70.6% 65.0%
Brossier 99.6% 97.9% 0.63 42.7% 53.5% 30.7%

5. Conclusion
It was hoped that by narrowing the melody transcription task
to vocal melodies only, a higher accuracy of transcription
would be achievable. Though results do not yet show this,
the pitch accuracy obtained is promising for a system which
has not yet been extensively developed. The pitch estima-
tion results also demonstrate the potential of using multiple
pitch estimators in parallel. The benefit of specialising in
vocal melodies is shown by the strong voicing performance,
where a relatively simple method achieves voicing perfor-
mance similar to the top-scoring system. More information
about the proposed system and a discussion of potential im-
provements are available in [4].
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