
Audio-Based Music Similarity and Retrieval:
Combining a Spectral Similarity Model with Information Extracted from

Fluctuation Patterns

Elias Pampalk*
National Institute of Advanced Industrial Science and Technology (AIST)

IT, AIST, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan

October 7, 2006

Abstract
This paper describes the implementation submitted by the
author to the MIREX’06 (Music Information Retrieval eX-
change) evaluation track on audio-based music similarity
and retrieval. In addition, this paper summarizes the opti-
mization of this implementation and its evaluation prior to
submission. Finally, a detailed analysis and discussion of
the MIREX results is presented. Overall, this implementa-
tion performed slightly better in terms of quality and com-
putation time than the other implementations. However, the
measured differences were not significant.

1. Introduction
The perception of music similarity is subjective, context-
dependent, and multi-dimensional (including instrumenta-
tion, harmony, melody, rhythm etc.). Nevertheless, the ba-
sic approach of this implementation is one-size-fits-all. In
particular, given any two songs, without any further context,
one number is computed.

There are mainly two reasons for focusing on such ob-
viously over-simplistic approaches. First, there are appli-
cations where one-size-fits-all can be applied such as auto-
matic playlist generation. Second, evaluating models which
change their similarity rankings depending on the respective
context is significantly more complex.

1.1. Evaluation
The optimal approach to compare the performance of com-
putational models of music similarity is to evaluate them
within the context of their application. For example, one
approach could be to ask users which similarity model gen-
erates the best playlists.

However, empirical results suggest that even without a
specific application context similarity ratings can be evalu-
ated consistently by human listeners. For example, Logan
& Salomon [1] presented results from a listening test where
two subjects were asked to judge if a given song is similar
to another (yes/no). The subjects disagreed in only 12% of
the cases.

A similar consistency of judgments is reported in [2]. In
particular, a listening test was conducted where the subjects

*) Part of this work was done while the author was working at the
Austrian Research Institute for Artificial Intelligence (OFAI).

were given a song (X) and asked to rate its similarity to two
other songs (A and B) on a scale from 1 to 9. Thus, each sub-
ject was asked for two numbers given three songs: the sim-
ilarity of AX and the similarity of BX. The consistency of
the ratings from different subjects were compared in terms
of the differencedi = AX i − BXi which was computed for
each subjecti. The results showed that this difference was
surprisingly consistent. In 26% of the cases two subjectsi
andj had the same values (di = dj). In 32% of the cases
the difference was only 1 point (|di − dj | = 1). In about
19% of the cases the difference was 2 points (|di−dj | = 2).
Only in a few cases the listeners truly disagreed (in 15% of
the cases (|di − dj | ≥ 4).

A simpler alternative to conducting listening tests is to
use a genre classification approach (e.g. [1, 3, 4]). The ba-
sic assumption is that given a piece of music, very simi-
lar pieces can be found within the same genre. However,
special precautions need to be taken such as applying an
“artist filter” and using different collections with different
taxonomies (for a detailed discussion see [2]).

1.2. Related Work
All details of this implementation are given in [2], where
the implementation (Matlab source code), optimization, and
evaluation (including a listening test) are described.

The approach of combining a spectral similarity model
with information from fluctuation patterns is based on previ-
ous work presented in [4]. A similar version which was op-
timized with respect to computation time was submitted to
the genre classification track of MIREX’05 [5] where it (de-
spite only using a nearest neighbor classifier) outperformed
a number of powerful classifiers (such as support vector ma-
chines).

The spectral similarity part of this implementation is based
on the work of Mandel & Ellis [6]. However, alternative
approaches developed by Logan & Salomon [1] or Aucou-
turier & Pachet [3] could be applied as well. The main ad-
vantage of the approach used by Mandel & Ellis is that it is
computationally very fast.

The fluctuation patterns were presented in [7, 8] and are
based on previous work by Fr¨uwirth & Rauber [9, 10]. The
“gravity” descriptor extracted form the fluctuation patterns
was presented in [4]. The “bass” descriptor is based on

work presented in [7] and was slightly modified as described
in [2]. The specific implementation of the fluctuation pat-
terns (e.g. using MFCCs) used for this implementation to
compute the fluctuation patterns was first described in [5].

2. Implementation of G1C
G1C stands for “Single Gaussian Combined”. The imple-
mentation submitted to MIREX is described in detail in [2]
including the Matlab code. In this section the techniques are
only roughly summarized.

First, for each piece of music the MFCCs are computed
for a maximum of two minutes from the center of the piece.
In particular, a 19-dimensional MFCC vector for every 23ms
of the signal is computed. The distribution of these vec-
tors is summarized using a single Gaussian (G1) with full
covariance matrix. The distance between two Gaussians is
computed using a symmetric version of the Kullback Leibler
divergence.

The fluctuation pattern (FP) describes the modulation of
the loudness amplitudes per frequency bands. To some ex-
tent it can describe periodic beats. A FP is a two-dimensional
matrix where each row corresponds to a frequency-band and
each column to a modulation frequency (in the range of
0-10Hz). The values of this matrix describe how strong the
fluctuation of the loudness amplitude is within a specific fre-
quency band and at a specific modulation frequency.

To compute the fluctuation patterns the Mel spectrogram
(with loudness in dB) is used. The Mel spectrogram is ob-
tained in an intermediate step when computing the MFCCs.
In the next step the energy in each frequency bands is re-
grouped into 12 bands. This re-grouping is done such that
variations in lower frequency bands are emphasized. The
Mel spectrogram is then chopped into 3 second segments.
For each segment, the loudness modulation in each frequency
band is computed using an FFT. The modulation frequen-
cies are analyzed in the range of 0-10Hz. The modulation
amplitudes are weighted to emphasize modulation around
4Hz based on a model of fluctuation strength [11, 12]. Spe-
cific modulation patterns are emphasized using smoothing
and edge detection filters. All fluctuation patterns computed
for each 3 second window are combined by computing the
median of all patterns. The patterns of two pieces of mu-
sic are compared by computing the Euclidean distance (and
first converting the matrix into a vector by concatenating the
rows).

From the FP of each song two features are extracted. One
is the “gravity” (FP.G). It is the center of gravity of the FP
along the modulation frequency dimension. It roughly cor-
responds to the perception if a piece is slow or fast. The
other is the “bass” (FP.B). It is computed as the fluctuation
strength of the lower frequency bands at higher modulation
frequencies. The distance of two songs for each of these
descriptors is computed as the absolute difference of values.

Given the four distance values (for G1, FP, FP.B, and
FP.G) the overall similarity of two pieces is computed as a

weighted linear combination. The normalization and weights
used are described in detail in [2]. If the inversion of the co-
variance necessary for G1 leads to numerical problems for
any song, then the combination weight is set to zero when it
is compared to any other song. The optimization and evalu-
ation of the weights is briefly described in Section 3.

2.1. Computational Resources
The following computation times are measured running Mat-
lab code (Windows XP) on a Pentium M 2GHz processor.
Given an audio file in WAV format extracting the features
for one piece of music takes about 2 seconds. Computing
the spectral similarity of two songs takes about 0.1 millisec-
onds. The FP part of the similarity computation is much
faster as it only requires computing the Euclidean distance
of two vectors with 362 elements each. For each song a to-
tal of 362 + 2×19×19+19 (=1103) values need to be stored.
(In addition to the G1 covariance matrix also the inverted
covariance matrix is stored so it does not need to be recom-
puted for each similarity computation.) For a comparison of
computation times see Section 4.5 and Figure 6.

3. Optimization and Evaluation
To optimize the combination weights and to evaluate G1C
a genre-based evaluation procedure was used. In particu-
lar, given a music collection containing pieces for which
the genre and artist is known the following steps were com-
puted: First, for each piece (query) all pieces from the same
artist in the collection are removed. Second, the piece most
similar to this query is found (according to the similarity
model). If this piece is from the same genre, the score for the
query piece is 1, otherwise 0. Finally, the average score for
all queries is computed. This is identical to nearest neigh-
bor genre classification, measuring the performance using
leave-one-out cross-validation, and using an artist filter to
ensure that training and test set contain non-overlapping sets
of artists.

The combination weights of G1C were optimized using
two music collections (DB-MS and DB-L described in [2]).
The parameter space was evaluated using a grid search in
combination with the genre-based evaluation approach. The
combination which performed best in average on the two
music collections, was evaluated using 4 collections (DB-
S, DB-ML, DB-30, DB-XL). In addition a listening test was
conducted to analyze how the genre-based results are related
to judgments made by human listeners. The results of this
test confirmed that improvements measured with the genre-
based procedure are also measurable using a listening test.
(For details see [2].)

4. MIREX’06 Results
The raw data and details of the evaluation procedure can be
found on the MIREX pages.1 This section briefly describes
the listening test setup and analyzes the results.

1 http://www.music-ir.org/mirex2006/index.php

4.1. Listening Test Setup
To evaluate the performance of the algorithms a user study
was conducted by IMIRSEL.2 First, each of the 6 algo-
rithms submitted to the contest retrieved the 5 most similar
songs form the database given the query. Songs from the
same artist as the query were filtered. The main reason for
filtering songs from the same artist is that the intention was
not to evaluate how well the submissions perform in artist
identification.3 Overall 60 queries were used for the listen-
ing test. Each candidate and query pair was rated by three
subjects.

Only researchers working on related topics participated
in the listening test. This restriction was necessary due to
legal issues.4 The participants were given a query song and
a list of 30 candidate songs and asked to rate the similarity
of each candidate song on a scale from 0-10 using a slider
(with a resolution of 0.1) where 0 corresponds to not similar
and 10 corresponds to very similar (fine scale). Instead of
using the slider the participants could directly enter a num-
ber into a text box. Overall, 32% of the fine score ratings the
participants entered are whole numbers (0,1,2,...) and 16%
are half numbers (0.5,1.5,...). In addition, the participants
were asked to rate each of the 30 songs on a broad scale
with the options: not similar (NS), somewhat similar (SS),
and very similar (VS).

4.2. Official Ranking
The official ranking of the algorithms was computed using
the data from the slider (fine scale). For each query and
algorithm a score was computed. This score is the mean
of the 15 (=3×5) similarity ratings (each in the range 0-10)
associated with each query/algorithm pair. In the next step
the Friedman test is computed, the results of the Friedman
test are then post-processed to find significant differences
between algorithms. The corresponding Matlab code is:

[p,table,stats] = friedman(M);
multcompare(stats, ...

’ctype’, ’tukey-kramer’, ...
’estimate’, ’friedman’, ...
’alpha’, 0.05);

whereM is a matrix with 60 rows (corresponding to the
queries) and 6 columns (corresponding to the algorithms).
The Friedman test was chosen because it is a non-parametric
test which does not assume a normal distribution of the data.

For each query the Friedman test ranks the algorithms
with respect to their scores. If an algorithm is consistently
ranked higher than another one, then it is significant better.
On the other hand, if the algorithm A scores better for half
of the queries and algorithm B for the other half, then the
difference is not significant. (Note that this is the case even

2 http://www.music-ir.org/evaluation/
3 For a discussion on the relationship between artist identification and

music similarity see [5].
4 For details see the email by Stephen Downie on the MIREX list on

September 2, 2006.

Mean Median

EP 4.30 4.05
TP 4.23 4.05
VS 4.04 3.50
LR 3.93 3.70
KWT* 3.72 3.40
KWL* 3.39 2.95

Table 1. Statistics of the average fine score per algorithm.
The minimum value is 0 (not similar) and the maximum is
10 (very similar).

if algorithm B has much higher scores in average.) Estimat-
ing the significance of differences is very important as some
difference are very small and wrong conclusions could eas-
ily be drawn.

The results are shown in Figure 1 (left side). Note that EP
marks the G1C algorithm and “*” marks all submissions that
contain bugs according to their authors. Most of the mea-
sured differences between algorithms are not significant ac-
cording to the Friedman test (at p-level 0.05). Only KWL*
performs significantly worse than some others.

4.3. Other Fine Scale Results
The right side of Figure 1 shows the results when the me-
dian is computed instead of the mean of the 15 ratings to
obtain the score for each query/algorithm pair. For some
query/algorithm pairs the differences between the two ap-
proaches can be very large. For example, the in contrast to
the mean the median would not distinguish between 1,2,9
and 1,2,3. The advantage of using the median is that it is
less sensitive to outliers. However, as can be seen the sig-
nificance of the measured differences remains the same.

Figure 2 shows the results when using a balanced two-
way ANOVA instead of the non-parametric Friedman test.
Although the necessary assumptions are not perfectly met
the results are very similar to those of the Friedman test.

Figure 3 shows the distribution of scores per query for
each algorithm. As can be seen, when each of the 60 scores
is computed as the mean of the respective 15 observations
the normal distribution is a better approximation than in the
case where the median is used.

Table 1 shows statistics of all ratings. The average ratings
are lower than those reported in [2] where the mean ratings
was 6.37 (one a similar scale from 1-9). The most likely rea-
son for the difference is the that a different music collection
was used. As shown in [2] the performances vary largely
depending on the collection. In any case, the average values
indicate that the overall quality of the similarity measures
might not be satisfactory for users. To evaluate this would
require tests within the application context.

4.4. Broad Scale Results
Figure 4 (left side) shows how the broad scale ratings are
distributed per algorithm. Overall, G1C got the largest num-

EP TP VS LR KWT* KWL*
2

2.5

3

3.5

4

4.5
M

ea
n

C
ol

um
n

R
an

ks
Mean Fine Score

EP TP VS LR KWT* KWL*
2

2.5

3

3.5

4

4.5

M
ea

n
C

ol
um

n
R

an
ks

Median Fine Score

Figure 1. Evaluation results using the Friedman test. The left side shows the final ranking of the contest. The red circles mark
the mean ranks computed using the Friedman test. The blue lines mark the significance bounds using a level of p=0.05. The
right side differs from the left side with respect to how the score was computed per query/algorithm pair. In particular, the
median was used instead of the mean.

EP TP VS LR KWT* KWL*
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

F
in

e
S

co
re

Mean Fine Score (two−way ANOVA)

EP TP VS LR KWT* KWL*

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

F
in

e
S

co
re

Median Fine Score (two−way ANOVA)

Figure 2. Results using a balanced two-way ANOVA instead of the Friedman test (see Figure 1). The left side uses the mean
and the right side uses the median to compute the score for each query/algorithm pair given the 15 observations.

0 1 2 3 4 5 6 7 8 9 10
0

10

20
KWL*

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15
KWT*

0 1 2 3 4 5 6 7 8 9 10
0

10

20
LR

0 1 2 3 4 5 6 7 8 9 10
0

10

20
VS

0 1 2 3 4 5 6 7 8 9 10
0

10

20
TP

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15
EP

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15
KWL*

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15
KWT*

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15
LR

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15
VS

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15
TP

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15
EP

Figure 3. Histogram of the 60 scores per algorithm. On the left side the scores are computed as the mean of all 15 observations
(subject ratings) and on the right side as the median.

ber of very similar ratings (VS) and about the same number
of not similar ratings (NS) as TP. The right side of Figure 4
shows a similar visualization using the fine scale data. As
can be seen, both scales have produced very similar results
except that the fine scale resulted in more fine grained dis-
tinctions.

The MIREX webpage lists a number of statistics com-
puted based on the broad scale data. There are a number
of different ways to interpret the broad scale data. Each
interpretation assigns a different number of points to each
similarity category. The optimal interpretation depends very
much on the final application. In the same way the broad
categories are assigned to different points the fine scale could
be mapped to a non linear scale to emphasize certain areas
of the scale differently.

Given a specific interpretation the average of points as-
signed to an algorithm per query is used for further analysis.
The statistics are listed in Table 2 and Figure 5 shows the
corresponding significance boundaries using the Friedman
test (and the mean to compute the scores).

4.5. Other Statistics

In addition to the results of listening test a number of other
statistics were computed. These are based on a collection
of 5000 pieces which included 330 cover songs. For some
of the statistics reported here, the cover songs were filtered
from the collection. In general the statistics are based on

computing the compute distance matrix (5000×5000 val-
ues).

4.5.1. Computation Times

Figure 6 shows the computation times for some of the sub-
missions. When interpreting the results it is necessary to
consider that some of the algorithms have not been opti-
mized with respect to computation times. However, the mea-
sured computation times are rough indicators of the com-
plexity of each algorithm.

Overall G1C is fastest to extract the features from the
5000 songs and compute the complete distance matrix. G1C
requires only about half the time to extract the features than
the next fastest submission. Lidy & Rauber (LR) submit-
ted by far the fastest algorithm with respect to the distance
computation time. Depending on the task this can be a sig-
nificant advantage. However, to improve the distance com-
putation time of G1C and TP, for example, M-trees [13] and
other indexing strategies could be used. In particular, for
most applications it is not necessary to compute a complete
distance matrix.

4.5.2. Characteristics of the Similarity Spaces

Most similarity space indexing algorithms make assump-
tions about the similarity space. To study the properties of
the similarity space three aspects were analyzed for those
algorithms which allowed computation of the complete dis-

EP TP VS LR KWT* KWL*

VS

SS

NS

VS

SS

NS

VS

SS

NS

VS

SS

NS

VS

SS

NS

VS

SS

NS

N
um

be
r

of
 r

at
in

gs

Broad Score Similarity Data

EP TP VS LR KWT* KWL*

N
um

be
r

of
 r

at
in

gs

Fine Score Similarity Data

Figure 4. The left side shows the number of times per algorithm the songs were rated with each of the broad similarity scale
categories. The categories on the broad scale are: not similar (NS), somewhat similar (SS), and very similar (VS). The right
side uses the data from the fine scale. For each algorithm the lowest block (green) corresponds to a rating of 10, the highest
block (red) to a rating of 0. All ratings are rounded to the nearest whole number.

Points per Category Scores
Abbreviation NS SS VS EP TP VS LR KWT* KWL*

Greater0 0 1 1 62.7 62.3 58.6 57.9 55.7 50.9
Psum 0 1 2 42.5 41.1 38.8 37.4 34.9 31.3
Wcsum 0 1 3 35.8 34.0 32.3 30.6 28.0 24.8
Sdsum 0 1 4 32.4 30.5 29.0 27.1 24.6 21.6
Greater1 0 0 1 22.3 19.9 19.1 16.9 14.2 11.8

Table 2. Evaluation scores using the broad scale data for different interpretations of the data. The values are normalized so
that the scale ranges from 0 (complete failure) to 100 (perfect). The general tendency is the same regardless of the points per
category.

EP TP VS LR KWT* KWL*
2

2.5

3

3.5

4

4.5

M
ea

n
C

ol
um

n
R

an
ks

Greater0

EP TP VS LR KWT* KWL*
2

2.5

3

3.5

4

4.5

M
ea

n
C

ol
um

n
R

an
ks

Psum

EP TP VS LR KWT* KWL*
2

2.5

3

3.5

4

4.5

M
ea

n
C

ol
um

n
R

an
ks

Wcsum

EP TP VS LR KWT* KWL*
2

2.5

3

3.5

4

4.5

M
ea

n
C

ol
um

n
R

an
ks

Sdsum

EP TP VS LR KWT* KWL*
2

2.5

3

3.5

4

4.5

M
ea

n
C

ol
um

n
R

an
ks

Greater1

Figure 5. The same evaluation results as shown in Figure 1 except that the broad score (with different interpretations) is used
instead of the fine score. In terms of the insignificance of the differences the results are similar to those using the fine score
data.

EP LR TP KWL* KWT*
0

5

10

15

20

C
om

pu
ta

tio
n

T
im

e
[h

]

Figure 6. Computation times for some of the submissions.
The lower part of each bar (yellow) is the feature extrac-
tion time (for 5000 songs). The upper part (blue) is the
distance computation time for the complete distance matrix
(which requires computing the distance of 12.5 million song
pairs). For KWL* the times for the individual parts were
not recorded. The VS submission was not able to compute
the full distance matrix within a reasonable amount of time.
The times were measured on a machine with: Dual AMD
Opteron 64, 1.6 GHz, 4 GB RAM, running Linux (CentOS).

tance matrix within reasonable time.5

First, the problem of “always similar songs” (also known
as “hubs”) was analyzed. Hubs in music collections were
first reported by Auctouturier & Pachet [14]. A detailed dis-
cussion can be found in [15]. A hub is a song that (according
to the computational model of similarity) is very similar to
a large number of other songs. However, this computational
similarity does not correspond to perceptual similarity.

Some similarity measures (such as those based on spec-
tral similarity) are affected. However, the number of these
hubs is usually very low, and in a collection of several thou-
sand pieces only few can be observed. Hubs are easy to
detect when analyzing a distance matrix, however, they are
difficult to detect when only computing a number given two
songs. Tim Pohle’s submission uses an interesting approach
to prevent extreme hubs.

Table 3 shows the maximum number of times a song ap-
peared in the top 5 ranks. The main observation is that in the
subset of cover songs one “always similar” song appeared
for G1C but not for the other submissions. The existence
of “always similar” outliers for G1C was also documented
in [2].

Very closely related to the analysis of “always similar”
songs is the question if there are any songs which never oc-
cur in the top 5 rankings. In the collection used for this
contest, no cases of “always dissimilar” songs were found.
However, as shown in [2] songs which are dissimilar to al-
most all songs in the collection (including songs which sound
similar) can occur using G1C.

Of interest is also if the triangular inequality holds in the

5 The analysis was implemented by Kris West.

Collection Size EP TP LR KWT* KWL*

4670 48 62 42 61 24
5000 1753 62 42 61 24

Table 3. Maximum number of times a song was ranked in
the top 5 most similar songs of all songs. The lowest possi-
ble value is 5. The highest possible value equals the size of
the collection minus 1.

similarity space the submission defines. The triangular in-
equality states that the sum of the distances AX and BX is
larger or equal to the distance AB (in our case A, B, and X
are songs). This inequality is an important characteristic of
metric spaces and a number of algorithms (especially index-
ing algorithms) rely on it. To measure the degree to which
the submissions fulfill the inequality a random sample of
triangles is drawn from the distance matrix. Each of these
triangles is tested whether the inequality is fulfilled. For the
submissions G1C, KWT*, and LR the inequality held for all
samples drawn. For TP the inequality held in about 32% of
the cases, and for KWT* in about 54%.

In [2] a different music collection is used and G1C ful-
fills the inequality only in 36% of the cases. One possible
explaination could be that the submitted version of G1C is
not exactly the same as the one used on [2]. The only differ-
ence is that the contribution of the spectral similarity is set
to zero if nummerical problems occur when computing the
inverse covariance matrix. However, nummerical problems
only occur very seldomly.

4.5.3. Genre-based Evaluation

Previous work has shown that evaluations based on genre
data correspond to evaluations based on similarity ratings
gathered in listening tests [2]. However, the genre data avail-
able for the music collection used in this contest was not
reliable. For example, Britney Spears and Depeche Mode
are assigned to the same genre (rock). Furthermore, the dis-
tribution of songs per genre is very unbalanced. This is re-
flected in the results computed using an artist filter which do
not reflect the results from the listening test.

The results without using an artist filter are more useful,
because they basically measure the artist identification per-
formance. However, identifying artists and finding similar
pieces are not the same tasks. For example, an algorithm
that can identify recording environments or other produc-
tion effects might perform very well for artist identification
but not for music similarity. for a more detailed discussion
on this see [5, 2].

5. Discussion
There are two reasons why the measured differences (us-
ing the listening test data) were not significant. First, the
differences between the algorithms are very small. Second,
the evaluation procedure was not adequate to measure these

small differences.

5.1. Glass Ceiling
Aucouturier and Pachet pointed out a glass ceiling for spec-
tral similarity [14]. The results of this listening test have
confirmed this ceiling. In particular, G1C is only marginally
better than the author’s submission to the MIREX 2005 and
ISMIR 2004 genre classification contests [2]. The main
improvements from 2004 and 2006 have been in terms of
computation time which has been reduced by several mag-
nitudes.

Thus, it is not surprising that some of the submissions
have reached the same glass ceiling. In particular, the over-
all difference between G1C and TP is very difficult to mea-
sure.

5.2. Evaluation Procedure
A very straightforward approach to increase the power of the
test (and allow us to measure significant differences) would
have been to use a larger number of queries. To reduce the
overall load on the subjects, fewer subjects per rating and
fewer candidates per algorithm and query could be used.
Thus, more than 10 times as many queries could have been
used in the evaluation without increasing the effort per sub-
ject.

Using fewer candidates per algorithm and query would
also have the advantage that the size of the local context
would be reduced. The local context is the context in which
the subjects rate the songs. This context consists of the
query, and the 30 candidates to be rated. A smaller local
context is likely to lead to more consistent ratings.6 For ex-
ample, in [2] the local context consisted of only 3 songs and
the consistency was higher. However, when using a larger
context (e.g. when evaluating several algorithms) the sub-
jects should be given tools to help them apply ratings con-
sistently. One such option would be to implement a sort
function for the ratings.

Figures 7 and 8 visualize the consistency of the ratings.
Figure 9 shows the consistency of the ratings from the listen-
ing test described in [2]. The consistency is computed as fol-
lows. For each query and candidate pair (60×30) there are 3
ratings (by three different subjects). We compute the abso-
lute differences between these ratings. In total this results in
60×30×3 absolute differences. In an ideal case all of these
would be zeros. In the worst case (worse than random) a
large proportion of these values would be 10 (which is the
maximum possible disagreement on the fine scale from 0-10).

The consistency can be quantified and compared using
the ratios of pairs with a very high consistency. In particular,
the first quarter of bins (using the histograms in Figures 7-9)
is considered to be highly consistent. In case of the broad

6 It is important to note that splitting the candidates per query into two
or more sets is not a solution. If the candidates are rated in a different local
context than the ratings are not comparable. As a result a test such as the
Friedman test could not be used to evaluate the results.

Same SS−NS SS−VS NS−VS
0

500

1000

1500

2000

2500

3000

N
um

be
r

of
 P

ai
rs

Figure 7. Histogram of absolute rating differences (broad
score).

0 2 4 6 8 10
0

100

200

300

400

500

600

700

800

Absolute Difference

N
um

be
r

of
 P

ai
rs

Figure 8. Histogram of absolute rating differences (fine
score).

0 1 2 3 4 5 6 7 8
0

20

40

60

80

Absolute Rating Difference

O
cc

ur
re

nc
e

Figure 9. Histogram of absolute rating differences for the
listening test reported in [2] where a scale from 1-9 was
used.

Evaluation Procedure Consistent Pairs

Broad Scale 51%
Fine Scale 55%
Evaluation reported in [2] 58%

Table 4. Percentage of very consistent pairs of ratings for
different evaluation procedures.

score data this means the ratio of exact same ratings com-
pared to the number of all pairs. For the fine score data the
first 5 bins are used. For the listening test conducted in [2]
the first 2 bins are used. The results are given in Table 4.
The results question the use of the broad scale and support
the argumentation for using a smaller local context.

6. Conclusions
Future listening tests should use a larger number of queries.
A fine scale is preferable to a broad scale because the rat-
ings are more consistent. Furthermore, the size of the local
context should be reduced to increase the consistency of the
ratings.

However, even with improved evaluation procedures the
differences between algorithms which have reached the “glass
ceiling” are very marginal and might not be relevant for
most applications. Evaluations within the context of appli-
cations are clearly desirable. A question of particular inter-
est is if the similarity measures in their current form (despite
their obvious limitations) can be successfully applied in any
applications.

6.1. Conclusions of the Evaluation Results
G1C was fastest overall and achieved the highest score. How-
ever, the measured differences were not significant. The
submission by Lidy & Rauber is the only algorithm which
uses a vector space. This results in extremely fast distance
computations and also allows the application of their sub-
mission to a larger number of problems. Their submission
is probably the most suitable for extremely large collections
(containing millions of pieces). Tim Pohle presented a very
interesting approach which can also be applied to G1C to
reduce the number of “always similar” outlier songs. Fur-
thermore, the distance computation time for his submission
is only about half of that for G1C which can be a major ad-
vantage for some applications.

References

[1] B. Logan and A. Salomon, “A music similarity function
based on signal analysis,” inProceedings of the IEEE Inter-
national Conference on Multimedia and Expo (ICME’01),
2001.

[2] E. Pampalk, “Computational models of music similarity
and their application in music information retrieval,” Doc-
teral dissertation, Vienna University of Technology, Austria,
March 2006.

[3] J.-J. Aucouturier and F. Pachet, “Music Similarity Measures:
What’s the Use?” inProc. of ISMIR, 2002.

[4] E. Pampalk, A. Flexer, and G. Widmer, “Improvements of
audio-based music similarity and genre classification,” in
Proceedings of the ISMIR International Conference on Mu-
sic Information Retrieval, 2005.

[5] E. Pampalk, “Speeding Up Music Similarity,” inProceed-
ings of the MIREX Annual Music Information Retrieval eX-
change, 2005.

[6] M. I. Mandel and D. P. W. Ellis, “Song-Level Features and
Support Vector Machines for Music Classification,” inProc.
of ISMIR, 2005.

[7] E. Pampalk, “Islands of Music: Analysis, Organiza-
tion, and Visualization of Music Archives,” MSc the-
sis, Vienna University of Technology, Department of
Software Technology and Interactive Systems, 2001,
http://www.ofai.at/˜elias/music/thesis.html.

[8] E. Pampalk, A. Rauber, and D. Merkl, “Content-Based Orga-
nization and Visualization of Music Archives,” inProceed-
ings of the ACM Multimedia, 2002.

[9] M. Frühwirth, “Automatische Analyse und Organisation von
Musikarchiven (Automatic Analysis and Organization of
Music Archives),” MSc thesis, Vienna University of Tech-
nology, Austria, 2001.

[10] M. Frühwirth and A. Rauber, “Self-Organizing Maps for
Content-Based Music Clustering,” inProceedings of the
Twelfth Italian Workshop on Neural Nets (WIRN01), 2001.

[11] E. Terhardt, “̈Uber akustische Rauhigkeit und
Schwankungsst¨arke (On the acoustic roughness and
fluctuation strength),”Acustica, vol. 20, pp. 215–224, 1968.

[12] E. Zwicker and H. Fastl,Psychoacoustics: Facts and Mod-
els, 2nd ed., 1999.

[13] P. Ciaccia, M. Patella, and P. Zezula, “M-tree: An Efficient
Access Method for Similarity Search in Metric Spaces,” in
Proceedings of the International Conference on Very Large
Data Bases, M. Jarke, M. Carey, K. R. Dittrich, F. Lo-
chovsky, P. Loucopoulos, and M. A. Jeusfeld, Eds., 1997.

[14] J.-J. Aucouturier and F. Pachet, “Improving Timbre Similar-
ity: How high is the sky?” Journal of Negative Results in
Speech and Audio Sciences, vol. 1, no. 1, 2004,
http://journal.speech.cs.cmu.edu/articles/2004/3.

[15] J.-J. Aucouturier, “Ten experiments on the modelling of
polyphonic timbre,” Docteral dissertation, University of
Paris 6, Paris, France, May 2006. [Online]. Available:
http://www.jj-aucouturier.info/papers/PHD-2006.pdf

