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THE AUBIO LIBRARY AT MIREX 2006

Paul M. Brossier
Centre for Digital Music

Queen Mary University of London
Mile End Road, London
piem@altern.org

ABSTRACT
For the 2006 edition of the Music Information Retrieval
Evaluation eXchange (MIREX), we presented the latest
enhancements to the aubio library, participating this year
in four different tasks: Audio Melody Extraction, Audio
Tempo Extraction, Audio Beat Tracking and Audio On-
set Detection. The algorithms we submitted are tailored
for causal operation and interactive systems. We describe
here the outline of these methods with pointers to the rel-
evant references. The evolution of the algorithm perfor-
mances from last year results is discussed, and this year’s
results are compared to that of other systems.

Keywords: MIREX, aubio, onset, melody, tempo.

1 INTRODUCTION
In (Brossier, 2006), we describe our investigations on
the automatic annotation of musical signals for interac-
tive systems. This study includes the evaluation of sev-
eral methods for onset detection, pitch extraction and beat
tracking. Different algorithms were implemented to work
in real time and evaluated on large databases of hand an-
notated data.

Our implementation, the aubio library, was designed
to use these annotation routines in interactive systems.
The library, along with the programs we submitted to the
2006 edition of MIREX, is available under the GNU Gen-
eral Public License (Brossier, 2003).

2 ALGORITHMS
We give here a brief description of the algorithms we sub-
mitted for the different tasks of MIREX. For a detailed
description of these methods, see (Brossier, 2006).

2.1 Onset detection

In (Bello et al., 2005), a number onset detection methods
were reviewed, several of which based on a phase vocoder.
For our causal implementation, we have implemented dif-
ferent onset detection methods with several modifications
for real time operations (Brossier et al., 2004).

The onset detection algorithms consist of a phase
vocoder, a detection function built from consecutive spec-
tral frames obtained from the phase vocoder, and a peak

picking algorithm tailored to find peaks in the detection
function corresponding to actual onsets and within a short
delay. A silence gate is also used to avoid spurious detec-
tions in areas of low energy.

We submitted four different functions, each to be run
with different pick peaking threshold values: high fre-
quency content (Masri, 1996), spectral difference function
(Foote and Uchihashi, 2001), complex domain function
(Duxbury et al., 2003), and a dual function, built using
both HFC and Kullback Liebler function (Hainsworth and
Macleod, 2003). A detailed study of this implementation
is given in (Brossier, 2006, Chap. 2).

2.2 Beat tracking

The algorithm submitted for beat tracking was first de-
scribed in (Davies and Plumbley, 2004), with further im-
provements for its real-time implementation in aubio in
(Davies et al., 2005). The approach makes use of an onset
detection function built on a phase vocoder, similar to that
used in Section 2.1. A modified autocorrelation of the on-
set detection function is then computed to determine the
beat period and phase alignment. Based on the detected
period and phase, beats are predicted for the following
frames, so that the beats can be tapped along live audio
streams. A detailed study of this implementation is given
in (Brossier, 2006, Chap. 4).

2.3 Tempo extraction

The method we use for the extraction of tempo is based
on beat tracking algorithm described in Section 2.2. The
MIREX evaluation metrics used for tempo extraction re-
quires two different tempo values and their corresponding
phases. The primary tempo values is computed by our
algorithm as the median of all beat periods found in the
file. In order to produce the two tempi output required by
the evaluation metrics, we use a set of simple rules: if the
primary tempo period is greater than 95 beats per minute
(BPM), the secondary tempo period is set to half the pri-
mary period; if instead the primary tempo period is found
smaller than 95 BPM, the secondary period is set to twice
the primary period. The value of 95 was determined em-
pirically based on the training set provided for this task.
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2.4 Melody extraction

The algorithm we have submitted to the melody extrac-
tion task is designed for fundamental frequency estima-
tion. The method is derived from the YIN algorithm
(de Cheveigné and Kawahara, 2002), and was detailed in
(Brossier, 2006, Chap. 3). A major modification to the
YIN algorithm is the use of a tapered squared difference
function to build the cumulative normalised sum. This
modification was found to facilitate the selection of the
fundamental period and to increase the robustness of the
method in the presence of noise and other instruments.

3 SOFTWARE IMPLEMENTATION
The aubio library consists in a collection of C routines.
The programs submitted for MIREX make use of the
Python external for aubio. For code availability, see
(Brossier, 2003).

Using the Python interface is convenient for rapid pro-
totyping and debugging. However, using Python causes
an increase of the run times of the algorithms, since the
Python environment has be loaded and unloaded at each
run, unlike for their C equivalent. The actual computa-
tion times required for each algorithms were measured
in (Brossier, 2006), where detailed comparisons of the
run times obtained for different onset and pitch detection
methods are given.

4 RESULTS DISCUSSION
4.1 Onset detection

The Precision-Recall graphs used to display the onset de-
tection results give an interesting comparison of the per-
formance of the different algorithms on different classes
of sounds. These graphs highlight the different perfor-
mances achieved by different methods on different sound
classes. The ranking of the algorithms are indeed very
dependant of the type of sounds, suggesting that the final
ranking is very dependant on the overall distribution in the
database.

Only minor changes were applied to the onset detec-
tion routines since our submission to the 2005 edition of
MIREX, so that the optimal results we obtain are very
similar to that of last year. The study of the threshold
parameter, with values in the range 0.1 to 0.9, demon-
strates the ability of our adaptive thresholding approach
to move from under-segmentation to over-segmentation,
regardless of the function we use.

4.2 Beat tracking

For its first edition, the beat tracking task has seen five dif-
ferent submissions. The P-score evaluation measure gave
results in the range 0.407 to 0.391, where our algorithm
ranked last. Given the small differences between submis-
sions, it would be interesting to have more detailed results.
However, our algorithm is not designed to extract beat lo-
cations at the very beginning of the file, and the P-score

we obtained is coherent with the one of M. E. Davies sub-
mission, which interpolates beat locations at the beginning
of the file, and which ranked 4th with a P-score of 0.394.

The aubio submission obtained the shortest run time
amongst submissions, with 139 seconds to run through the
test set, while other submissions were executed in between
498 seconds and 1394 seconds.

4.3 Tempo extraction

With an average of 78.57% of files annotated with the
correct tempo period, results showed that our algorithm
actually performed worst than last year (80.71%), which
seems to indicate that parameters are over fitted to the test
data set. However, the empirical rule we used to determine
the second tempo value seem fairly efficient, with 50.71%
of the files annotated with both correct tempi, whereas
M. E. Davies submission detected both correct tempi in
45.71% of the files.

4.4 Melody extraction

The results we obtained for this year MIREX edition are
encouraging, since no post-processing was done on the
pitch track, and the output of the pitch detection were used
directly for evaluation. As we have no mechanism to de-
cide whether or not a frame is voiced, the voicing false
alarm rate is not relevant for our algorithm.
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Tempo estimation and beat tracking with adaptive input selection

M. E. P. Davies and M. D. Plumbley
Centre for Digital Music

Queen Mary University of London
Mile End Road, London, E1 4NS, United Kingdom

matthew.davies@elec.qmul.ac.uk

Abstract

We present details of our submissions to the Audio
Tempo Extraction and Audio Beat Tracking contests
within MIREX 2006. The approach we adopt makes
use of our existing beat tracking technique with a mod-
ified tempo extraction stage, and with the provision of
three different onset detection functions to act as input.
For each onset detection function we extract potential
beat locations and then employ a confidence measure
to find the most appropriate input representation for a
given audio signal. The beats which yield the highest
confidence are extracted as the output of the system.

Keywords: Beat tracking, Tempo extraction, onset de-
tection, MIREX

1. Approach

In this paper we address two aspects of computational
rhythmic analysis: i) finding the underlying tempo of
a piece of music; and ii) the related topic of extract-
ing beat locations. The output of each algorithm has
been compared against the performance of other sub-
mitted algorithms with the MIREX 2006 Audio Tempo
Extraction [1] and Audio Beat Tracking [2] contests.
A detailed description of the operation of our beat track-
ing system which incorporates both the extraction of
tempo and beat locations may be found in [3]. There-
fore within this extended abstract, we merely provide
an overview of the operation of each algorithm, in par-
ticular addressing those aspects which differ from our
previous approach.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.
c© 2006 University of Victoria

1.1. Beat Tracking System

The beat tracking system [3] upon which both MIREX
submissions are based can be broken down into four
discrete stages:

• The transformation of the input audio signal into
an onset detection function (DF).

• The extraction of the beat period by passing the
autocorrelation function (ACF) of the DF through
a shift-invariant comb filterbank.

• The extraction of the phase of the beats by cross-
correlating the DF with an impulse train with im-
pulses at beat period intervals.

• The use of a two-state switching model to track
tempo changes and enforce contextual continu-
ity within constant tempo regions.

1.2. Tempo Estimation

The Audio Tempo Extraction contest requires the iden-
tification of two perceptual tempi consistent with the
performance of multiple human annotators and a salience
value describing the strength of the primary metrical
level over the secondary level. Within our submission
to the MIREX 2005 Audio Tempo Extraction contest
(for which the test data and annotations were identical)
we extracted the single tempo which most strongly res-
onated with the periodicities within the input ACF, and
inferred the secondary tempo and salience using a sim-
ple rule-based approach.
To provide a more robust method, we now apply a peak
picking algorithm to the comb filterbank output func-
tion. Given a range of possible beat periods with cor-
responding peak heights, we find thelog2 ratio of all
combinations of peak heights, normalising and scaling
the results such that a perfect 2:1 ratio will have a min-
imum absolute score,s1 of zero,
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Figure 1. Overview of beat tracking system

s1(i, j) = |(1 − | log2(
P (i)

P (j)
)|)| (1)

whereP (i) andP (j) are the respective periodicities
for peaksi and j. To eachs1(i, j) we then add the
weighted reciprocal of the sum of the peak heightsA(i)
andA(j) to give a second score,s2

s2(i, j) = s2(i, j) +
δ

A(i) + A(j)
(2)

whereδ is empirically set to 0.01. We then extract the
pair of periodicitiesP (i) andP (j) with the lowests2

as those which represent the perceptual tempi of the in-
put, taking the periodicity with the higher peak height
as the primary metrical level and the lower as the sec-
ondary level. The normalised ratio of peak heights then
provides the salience,

salience =
A(i)

A(i) + A(j)
(3)

where in this exampleA(i) > A(j).

1.3. Beat Tracking with an adaptive input
The task of beat tracking can be considered analogous
to the human ability of foot-tapping in time to music.

While seemingly intuitive for humans, beat tracking
remains a complex task in computational rhythmic un-
derstanding. A particular failure of many approaches
(for a review see [3]) is the inability to maintain equiv-
alent performance across a wide range of musical gen-
res.
Preliminary experiments in [4] demonstrated that the
overall beat tracking performance of our system could
be significantly improved by knowing a priori which
of several possible onset detection function to use as
input, while leaving all other aspects constant. We
now extend this concept by attempting to automatically
identify the onset detection function most suited to the
input signal. The approach we adopt first involves the
calculation of three related onset detection functions:
i) complex spectral difference; ii) phase deviation; and
iii) spectral difference [5].
We then calculate the beat locations for each detection
function and then a useconfidencemeasure to select
which beats are to be taken as the output to the system.
The confidence measure is related to the beat tracking
evaluation function [2], which we calculate by cross-
correlating an impulse train representing the predicted
beat locations with each detection function, selecting
the beats arising from the strongest correlation as the
output. An overview of our approach is shown in fig. 1

2. Results

The results for the Audio Tempo Extraction contest are
shown in Table 1 and the results for the Audio Beat
Tracking Contest are in Table 2. For each table the
overall P-scoreis taken to represent the performance.
Further details of the competing algorithms may be
found on the respective MIREX web-pages, for Tempo
Extraction [1] and for Beat Tracking [2].

Contestant P-score

Dixon 0.407
Ellis 0.401

Klapuri 0.395
Davies 0.394
Brossier 0.391

Table 2. Results table for Audio Beat Tracking

Results indicate that for Tempo Extraction our approach
placed 2nd out of 7 entries and was 4th out of 5 entries
for Beat Tracking.

Music Information Retrieval Evaluation eXchange - MIREX 2006
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Contestant At least 1 tempo correct Both tempi correct P-score

Klapuri 94.29% 61.43% 0.806
Davies 92.86% 45.71% 0.776

Alonso 2 89.29% 43.57% 0.724
Alonso 1 85.71% 45.71% 0.693

Ellis 79.29% 42.86% 0.673
Antonopoulos 84.29% 47.86% 0.669

Brossier 78.57% 50.71% 0.628

Table 1. Results table for Audio Tempo Extraction
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Beat Tracking with Dynamic Programming

Daniel P.W. Ellis
LabROSA, Dept. of Electrical Engineering

Columbia University, New York NY 10027 USA
dpwe@ee.columbia.edu

Abstract
There are many applications for which we would like to

be able to track the ‘beat’ of a piece of recorded music –
analogous to a listener’s foot-tapping. This paper describes
our beat-tracking system, which operates by first estimating
a global tempo (via autocorrelation of an ‘onset strength’
signal), then using dynamic programming to find the best
sequence of beat times through the whole piece that both
places beats on moments of high ‘onset strength’, as well
as maintaining a spacing between beats that agrees with the
global tempo. This system has been submitted to the 2006
MIREX Audio Tempo Extraction and Audio Beat Tracking
competitions.

Keywords: Tempo Extraction, Beat Tracking, Autocorrela-
tion, Dynamic Programming

1. Introduction
Finding the beats in a musical recording is an interesting
challenge and can form the basis of a number of applica-
tions, such as automatic accompaniment, transcription, computer-
assisted audio editing, and music similarity. In this paper we
describe our beat tracking system, which was in fact devel-
oped as part of our cover song detection system (since beat-
synchronous features are a good way to normalize away
tempo variations between different versions of a song) [1].

Evaluating systems for beat tracking (and hence tempo
extraction) is complicated by the fact that different ‘levels’
in a hierarchy of beats may be considered as the main beat
by different listeners. For MIREX, this problem has been
neatly solved by collecting actual human tapping data for
the test database [3]. Our system has been tuned with the 20
training samples released for the MIREX-06 tempo and beat
evaluation. Each sample consists of 30 s of audio (from a
range of styles and genres) along with the tap-instants of 40
different subjects who were played the samples. There are
usually two different beat periods represented in the user
data, where one is 2 or 3 times faster than the other. Beat
trackers are evaluated by their ability to match the entirety
of the subjective ground truth data, which means in practice

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
c© 2006 University of Victoria

choosing one tempo, and accepting that matches will not be
high for subjects who choose a different tempo.

The following section describes our system, then section
3 reports performance on the evaluation data.

2. System Overview
This section describes each module in our system.

2.1. Onset Strength Signal
The first stage of processing is to convert the audio into a
one-dimensional function of time at a lower sampling rate
that reflects the strength of onsets (beats) at each time. We
based this on the front-end on the one described in [2]. A
log-magnitude 40-channel Mel-frequency spectrogram is cal-
culated for 8 kHz downsampled mono versions of the orig-
inal recording with a 32 ms window and 4 ms hop between
frames. The first-order difference along time in each fre-
quency channel is half-wave rectified (to leave only onset
information) then summed across frequency. This ‘onset
strength’ envelope is high-pass filtered with a 3 dB point
at 0.01 rad/samp to remove d.c. offset (corresponding to
global gain variations in the original signal, prior to the log
operation).

2.2. Tempo Estimation
The onset strength for the entire signal is autocorrelated out
to a maximum lag of 4 s (i.e. 1000 samples at our 4 ms
sampling period). This raw autocorrelation is then scaled by
a window to capture the intrinsic bias of listeners towards
a particular range of tempi; in this way, the multiple peaks
typical of the autocorrelation of a period signal can be re-
solved to a single dominant peak. Our window is a Gaussian
on a log-time axis, and is characterized by its center (the
BPM at which it is largest), and its half-width (the sigma of
the Gaussian, in units of octaves on the BPM scale, since
the axis is in fact logarithmic). We tuned these parameters
by hand to give the best agreement with the subjective data
provided for the MIREX competition; the best center was at
120 BPM (agreeing with perceptual results for the preferred
tapping rate of subjects), and the width was 1.4 octaves (i.e.
the window has fallen to 60.7% of its peak value at 323 BPM
and at 44.6 BPM). The lag corresponding to the largest value
in this autocorrelation was reported as the strongest tempo.

The competition also requires a second tempo, which is
scored against the second-most popular tempo observed in
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Figure 1. Autocorrelation of the 30 s Bragg excerpt. The log-time Gaussian weighting window is shown overlaid, and the
primary (89 samples = 356 ms = 168.5 BPM) and secondary (178 samples = 712 ms = 84.3 BPM) periods are shown by vertical
lines.

the subject studies. To find this, we searched the autocorre-
lation peaks closest to 0.33, 0.5, 2, and 3 times the strongest
tempo. Whichever of these was largest was reported as the
secondary tempo. The weight of the stronger tempo, also
requested for the evaluation, was simply taken as the value
of the largest autocorrelation peak divided by the sum of the
peaks at both reported tempi. This value does not affect the
evaluation metric as defined, so no effort was made to match
it more closely to the ground-truth values in the training set.

Figure 1 shows the autocorrelation for example 2 of the
training set, a 30 s excerpt from “New England” by Billy
Bragg (vocals and guitar only).

2.3. Beat Tracking
The best BPM is passed to the beat tracking module, which
attempts to find a sequence of beat times that all correspond
to large values in the onset waveform, The onset signal is
first smoothed by convolving with a Gaussian window whose
half-width is 1/32 of the specified beat period. Then the best
cumulative score is found for beat sequences ending at every
possible time sample. This is done efficiently with dynamic
programming: for each time point, a search is done over a
range 0.5 to 2 beat periods into the past. The best cumulative
score at each time in that window is scaled by a ‘transition
weight’, which is another log-time gaussian, centered on the
ideal time (one beat into the past), and with a width speci-
fied as a parameter of the system – a narrower width makes
it harder for any beat to deviate far from the specified target
period. The largest scaled value is chosen as the best pre-
decessor beat for the current time, and added to the current
onset signal value to give the best cumulative score for this
time. The time of the preceding beat is also recorded. At the
end of the excerpt, the best cumulative score within a cou-
ple of beats of the end is chosen, then traced back through
all the preceding-time records to get the entire sequence of
beats that gave rise to that best score.

In order to keep a balance between past scores and local
match, the best score at the preceding beat is actually scaled
by a constant a little smaller than 1 before being added to
the current beat’s score. This constant is a second parameter
to the system: the smaller it is, the more weight is placed

on achieving a good local match versus choosing a good
history. This is a second parameter to the algorithm.

Figure 2 shows an example of the beats found in the first
15 s of the Bragg excerpt. The advantage of dynamic pro-
gramming is that it effectively searches all possible sets of
beat instants, since it is guaranteed to find the best-scoring
sequence up to any point. This allows the best global beat
sequence to be found, even if it involves some locally-poor
matching, for instances beats that occur during silence or
uninflected sustained notes.

3. Evaluation
The MIREX-06 audio tempo and beat evaluations make avail-
able 20 training excerpts, for which ground-truth tempi and
beat times are given, as described above. The principal eval-
uation metrics are also defined. Thus we were able to opti-
mize some of the tuning parameters of our system to maxi-
mize performance on this set.

For tempo extraction, the middle tempo of 120 BPM and
the window width of 1.4 octaves were chosen this way. With
these settings, using the weighted both-tempo matching score
defined for the evaluation (which rewards identifying either
or both of the two tempo levels in proportion to their ob-
served prevalence among subjects) our system achieves a
score of 77% correct.

For beat tracking, we tuned the transition window width
and forgetting factor to maximize the evaluation score on the
training data. The optimal window width weighted the ex-
treme values in the preceding beat window (at 0.5 and 2 peri-
ods earlier) both at 0.17× the central peak. The best forget-
ting factor decayed the history by a factor of 0.8 at each step.
With these settings, and using the defined primary metric,
our system scored 56.6% correct. Note, however, that 100%
is not obtainable due to inconsistencies between the ground-
truth listeners – no single beat tracker output can agree well
with both of the two levels of beats typically found among
the training data.

Since beats tracked at a slower tempo run the risk of be-
ing one half-cycle out of phase (i.e. picking beats 2 and 4
instead of 1 and 3), we thought that always using the faster
of the two identified tempo (i.e. picking beats 1, 2, 3, and 4)
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Figure 2. Excerpt showing the Mel-scale spectrogram (top pane), and the smoothed onset strength evelope (lower pane) for the
first 15 s of the Bragg excerpt. Chosen beats are shown as vertical divisions. Notice the extensive syncopation (strong onsets
midway between perceived beats).

might be a safer option. However, we found we got better
scores by using the primary BPM value (i.e. the largest peak
in the weighted correlation), whether or not it was faster
than the alernative.

4. Conclusions
Using a relatively simple onset detection scheme, and as-
suming more-or-less fixed tempo throughout a piece, we
find simple autocorrelation, suitably weighted to simulate
a perceptual bias, does well at predicting perceived tempo.
Beat tracking that uses dynamic programming to search all
possible beat sequences does well, even when there are voids
where beats have to be filled in, since the location of future
as well as past beats can affect their position. Future work
includes modifying the beat tracker to take account of slow
but systematic changes in tempo, and perhaps a system that
extracts multiple
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Abstract
This extended abstract gives an overview on two content-
based retrieval algorithms for symbolic music, developed
earlier in the C-BRAHMS group [1], that took part in the
Symbolic Melodic Similarity and Query by Singing/Humm-
ing tasks of the MIREX 2006 contest [3, 4]. Given two ex-
cerpts of symbolically encoded monophonic or polyphonic
music, the query pattern and the target music, the purpose
of these algorithms is to find musically relevant occurrences
of the query pattern within the target music.

Keywords: MIREX 2006, Melodic Similarity, Geometric
Matching

1. Introduction and Background from
MIREX 2005
In the previous MIREX contest organized in 2005 we sub-
mitted both a basic monophonic string-matching algorithm
and the same geometric algorithm that is described in this
abstract. Last year the Symbolic Melodic Similarity (SMS)
task only included monophonic music from the RISM A/II
collection of incipits and the results were compared to a
human-generated ground truth. Both our string-matching al-
gorithm and the more complex geometric algorithm seemed
to work equally well, with the geometric algorithm perform-
ing only slightly better. One of the reasons for that perfor-
mance was probably the fact that the string-matching algo-
rithm does not use any rhythmic information at all and the
geometric method is not time-scale (tempo) invariant; it re-
quires that both the query and target melodies are played at
the same speed.

This year in MIREX 2006 there were two Symbolic Mel-
odic Similarity subtasks: a monophonic task based on the
RISM collection and both exact (quantized in pitch and rhyt-
hm) and hummed queries; and a similar polyphonic task
based on MIDI files harvested from the Internet [3]. We
were especially interested in the polyphonic task and there-
fore we submitted the same geometric P3 algorithm that
we submitted last year, only this time as two entries: the
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original one (P3) and a brute force tempo scaling version
(ScaledP3) that runs the original algorithm multiple times
with the pattern scaled in time by predefined constant factors
and retrieves the best match across the runs. An overview of
these algorithms is given in section 2.

We also intended to submit ScaledP3 to the Query by
Singing/Humming (QBSH) task but after testing various ap-
proaches with the data set, we decided to use a recursive ex-
haustive search algorithm instead. The MIDI data available
represented some challenges and the alternative would have
been to process the queries with our own melody extraction
method which we do not have yet. The ES algorithm is de-
scribed in section 3.

2. Sweepline Algorithm
Our submission to the SMS task is based on a geometric
sweepline technique that is applied on a piano-roll type rep-
resentation of the musical score [2]. The intuition behind
this algorithm is to slide the bar-lines representing the query
over the piano-roll representation of target and to find the
position that gives the maximal common shared time (see
Figures 1 and 2).

1 2 3 4 5 6 7 8

60
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66

68

70

72

pitch

time

Figure 1. Query in piano-roll representation.

To this end, the piano-roll representations of the query
and the target music are given to the algorithm as lexico-
graphically ordered turning points that are calculated based
on the start and end points of the bar-lines representing the
query and the target.

The algorithm first populates a priority queue with two
translation vectors for each turning point in the pattern. In
the beginning the vectors point to first starting and ending
point in the target. After this initialization the algorithm
loops through all possible translation vectors between the
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Figure 2. Target in piano-roll representation. The first twelve
notes of the query in Figure 1 are shown by shading in a trans-
lated position such that the total length of the overlapping is
six quarter notes.

query and the target. At each iteration the first vector in lex-
icographic order is retrieved from the queue and replaced by
the next corresponding vector (a vector for the same turning
point in the query) that has not yet been inserted into the
queue.

When the algorithm iterates over translation vectors, it
counts common time between the query and the target on
each vertical translation level to ensure transposition invari-
ance. The time is counted by using a linear slope that the
translation vectors adjust, and the maximal overlapping is
simply checked for at each iteration. Finally, normalizing
the maximal overlapping by the combined length of query
or target notes (whichever is smaller) results in a value that
expresses the similarity of the query and the target.

The brute force pattern-scaling version of the algorithm
simply uses the method described above multiple times with
the notes in either the pattern or the target scaled in time. We
used scaling factors 0.5, 0.667, 0.8, 1.0, 1.25, 1.5 and 2.0.
The selection of these values is not based on extensive ex-
perimentation, so they are probably not the optimal factors
for the task. Heuristics could perhaps be used to select a
suitable scale or to at least limit the range.

The overall best match is chosen simply by comparing
normalized overlap lengths of the best matches returned from
the runs with each scaling factor. With such a low number of
factors, good matches usually stand out from the rest. Using

more scaling factors would allow smoother matching, but
the algorithm execution time would also quickly increase
unbearably. This brute force method should give slightly
better results than the original one whenever note timing in
the query is not expected to be the same as timing in the po-
tential matches, just like in the SMS and QBSH tasks. Of
course, this will not help much with tempo changes that may
occur within hummed queries.

P3 runs in O(mn log m) time where m and n denote the
number of musical events (notes) in query and target, re-
spectively. The scaled version of the algorithm increases
the execution time by a constant factor of 7.

3. Recursive Algorithm
The ES algorithm that we submitted to the QBSH task also
uses a piano-roll representation of music, but it does not
maximize the overlapping in the same way as P3 does. In-
stead it performs an exhaustive depth-first search trying to
scale the pattern note-by-note to ’fit’ the target song, with
costs applied to local time-scaling, note duration changes
and pitch-shifting. Clearly irrelevant branches are cut with
simple heuristics while searching, which keeps the average
running time in an usable range, although the worst case
time complexity is O(nm).

First the algorithm divides the piano-roll representation
into tiles that have a height of one MIDI pitch level and
a width chosen so that there would not be many notes in
one tile. A pointer to the first note that starts in each tile
is stored to a table and subsequent notes at the same pitch
level are linked together. This tile table is used for hashing:
quickly finding notes that start within a specific range in the
target music. The tile table size is a compromise between
quick lookups and space consumption. We used a static tile
length of 100 ms but a more optimal value for each pitch
level could be chosen by scanning through the target music.

Next the target music is searched for the best occurrance
of the pattern by checking recursively for a match at each
note in the music, starting with each note in the pattern. For
note Ti in the target music and note Pj in the pattern, the
recursive check is started by calculating the expected pitch
and starting time interval of the next matching note, or mul-
tiple notes when gaps are allowed in the matches. All po-
tentially matching notes are looked up from the tile table,
match score is updated and the same check is executed re-
cursively for each of the notes, starting at the next position
in the pattern.

The most adjustable part of the algorithm is the way how
the following potentially matching notes are picked and scor-
ed at each recursion level. This procedure can be weighted
by the already matched part of the pattern or it can be done
independently for each position. To calculate the expected
pitch level, we simply take the pitch interval between Pj+1

and Pj , and add that to the pitch of Ti. Similarly, the dif-
ference between start times of the consecutive notes in the
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pattern is scaled in proportion to previously matched notes
and added to the start time of Ti.

Pitch and tempo shifts are handled by retrieving all notes
within a certain range from the expected position: ± 2 pitch
levels and the delta time scaled by 0.5 – 2.0. Notes that
start outside this area are not considered further at that point
of recursion. Each melody line that continues from the re-
trieved notes is checked recursively and the match scores
are updated. Notes that are closest to the expected note po-
sition and have similar duration to the corresponding note in
the pattern receive the best score. This is done by multiply-
ing together factors derived from all these differences. 1.0
is a perfect match of a note and 0 is a complete mismatch.
Therefore the whole pattern has a maximal score of m− 1,
and match scores are normalized by dividing them with this
value.

4. Results and Analysis
In this section we analyze results from the two MIREX 2006
tasks that our algorithms competed in. More information
about the tasks and evaluation methods can be found through
task descriptions in the MIREX Wiki. Abstracts from all the
participants are published in the result pages. [3, 4]

4.1. Symbolic Melodic Similarity
Our algorithms were at the tail of the competition in all the
Symbolic Melodic Similarity tasks (see Figures 3, 4 and 5).
Comparing the results of our two P3 variations and look-
ing at the results from last year might suggest that there was
a problem within our implementation this year that did not
surface as strongly last time. The difference may certainly
come from different task setup, but since the RISM A/II col-
lection was used both times and other algorithms performed
much better, we might have mistuned something.

Figure 3. Summary of MIREX 2006 Symbolic Melodic Simi-
larity Monophonic (RISM) task results. The teams and algo-
rithms are FH: Pascal Ferraro and Pierre Hanna, NM1: our
original P3 algorithm, NM2: scaled P3, RT: Rainer Typke,
Frans Wiering and Remco C. Veltkamp, KF: Klaus Frieler
and AU: Alexandra Uitdenbogerd. We thank Rainer Typke
for providing these graphs.

Figure 4. SMS Mixed Polyphonic task results.

Figure 5. SMS Karaoke Polyphonic task results.

One possible source of problems with the RISM data
is the normalization of common time in a match which in
our current implementation allows incipits with only a few
notes to match the queries better than longer incipits that hu-
mans would consider best matches. We first used this nor-
malization scheme last year, when it seemed to work better
than simply dividing the common time by pattern duration.
After the MIREX 2006 results were published, we com-
pared these two normalization approaches with the evalu-
ation data, and there is a clear difference in favor of the sim-
ple normalization by pattern duration. This only affects the
results when matching short queries in a database of poten-
tially even shorter incipits, such as the RISM collection. For
straight similarity comparison of two songs, the normaliza-
tion we used is a valid approach.

The poor performance of our submissions in the poly-
phonic SMS tasks (Figures 4 and 5) was most likely caused
by our decision to ignore all track and channel information
available in the MIDI files in the algorithm implementation.
With the track information in place, the task can be reduced
to almost monophonic similarity comparison where simple
dynamic programming methods work well. Of course it
could be argued that in the real world the track information
is usually available, but then again, there are cases where
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XW1 XW2 RJ RL NM CS1 RT2 CS3 AU2 CS2 AU1 RT1

Task I (MRR) 0.926 0.900 0.883 0.800 0.688 0.568 0.390 0.348 0.288 0.283 0.205 0.196

Task II (Mean Prec.) - - 0.926 - 0.722 0.587 0.401 0.415 0.238 0.649 0.163 0.468

Table 1. Query by Singing/Humming task results. We refer the reader to the task description for more information about the test
collections and the evaluation method [4]. The teams are AU: Alexandra Uitdenbogerd, CS: Christian Sailer, FH: Pascal Ferraro
and Pierre Hanna, NM: us with the ES algorithm, RJ: J.-S. Roger Jang, Nien-Jung Lee and Chao-Ling Hsu, RL: Ernesto Lopez and
Martin Rocamora, RT: Rainer Typke, Frans Wiering and Remco C. Veltkamp and XW: Xiao Wu and Ming Li.

the searched pattern is not constrained to one track – here it
was in majority of the relevant files considering the queries
used. There are also sources such as automatic polyphonic
transcriptions of audio recordings, where the instrument in-
formation may not even be available at all.

The P3 algorithm is computationally efficient but it does
not use any indexing, so searching large databases can be
slow. In MIREX 2005, parsing the short MIDI incipits prob-
ably took most of the time the algorithm was measured to
run for and therefore the execution time of the actual algo-
rithm was not clear. Overall it was the fastest one along
with our DP algorithm. This year there were much longer
pieces of music in the polyphonic task and the indexing and
query execution times were separated for those algorithms
that support indexing. It is clear that an indexing scheme is
necessary in most applications that require searching mas-
sive music collections, even though fast on-line algorithms
have their uses as well. Indexing polyphonic music fully
and efficiently is still a big challenge.

4.2. Query by Singing/Humming
The ES algorithm that we submitted to the QBSH task is an
experimental brute force implementation of ideas that may
be useful in symbolic melodic similarity in general when
implemented more efficiently. Currently it is too slow for
polyphonic matching with patterns longer than 10-20 notes,
although it could be used for n-gram searches or index con-
struction. The results from QBSH (see Table 1) are quite
encouraging since this algorithm performed fairly well even
with the imperfect MIDI queries supplied, while the other
purely symbolic algorithms (AU, FH and RT) had more dif-
ficulties with them.

Overall, these two MIREX tasks were a teaching expe-
rience on music information retrieval from large databases.
We will have to consider richer approaches for weighing the
potentially matching notes, like the ES algorithm does, but
hopefully with much lower time complexity. If that proves
to be impossible or difficult, we could use a multi-level ap-
proach where a simple and fast algorithm retrieves a long
list of potential matches and then a slower algorithm filters
those results to pick the best matches. A similar approach
might be applicable to polyphonic indexing.
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Abstract
This paper describes our approach to the MIREX 2006 Au-
dio Music Similarity and Retrieval evaluation task. We use a
new implementation of the Statistical Spectrum Descriptor
feature extractor and compute a distance matrix for similar-
ity retrieval in Matlab.

1. Audio Feature Extraction
We have completely re-implemented the feature sets used in
the MIREX 2005 Audio Genre Classification in Java, and
thus participate in this years evaluation exchange with the
new Java implementation. The Java feature extraction can
now extract Rhythm Patterns features, Statistical Spectrum
Descriptors and Rhythm Histograms from au, wav and mp3
files, with either 11, 22 or 44 kHz. It enables the recursion
of arbitrary directories containing any number of audio files
and also the mixed usage of different file formats and even
sampling rates within one feature extraction process. (As
the MIREX 2006 Audio Music Similarity and Retrieval task
however uses only wav format as input, we omit the submis-
sion of the library for reading mp3 files). It should be more
robust than the Matlab implementation and has also been
tested with silence in audio. If an error occurs with some
file, the program outputs a meaningful message, skips the
file and continues with the next audio file. (In this case that
audio file will not be included in the distance matrix).

From pre-liminary tests we found that the Statistical Spec-
trum Descriptors (SSD) deliver reasonable results when em-
ployed for retrieval with similarity rankings. As the compu-
tational cost for extracting SSD is also lower than as for both
Rhythm Patterns and Rhythm Histograms, and the dimen-
sionality is lower than the one of Rhythm Patterns (which
reduces the cost for distance calculations), we decided to
base our submission solely on the SSD features.

The following paragraphs describe the implementation of
the SSD feature extraction. For the other feature sets we
refer to [1].
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Statistical Spectrum Descriptors are derived from a psycho-
acoustically transformed spectrogram and comprise several
statistical moments, which are intended to describe fluctua-
tions on a number of critical frequency bands.

Before the calculation of the features, the audio file is
segmented into chunks of approx. 5.9 seconds. The first and
the last segment are skipped, from the remaining segments,
every 3rd one is processed. An SSD feature vector is the
calculated for every segment.

First the spectrogram is computed using the short time
Fast Fourier Transform (STFT), with a window size of 1024
(@ 44 kHz), 512 (@ 22 kHz) or 256 (@ 11 kHz), respec-
tively, and 50 % overlap.

The Bark scale, a perceptual scale which groups frequen-
cies to critical bands according to perceptive pitch regions,
is applied to the spectrogram. The Bark scale is defined
by limits within the audio frequency region, partitioning the
frequency spectrum into 24 critical bands. Using 22 kHz
audio as input, the number of bands is 23 only. Frequency
bands from the spectrogram are aggregated to the bands de-
fined by the Bark scale [2].

The Bark scale spectrogram is then transformed into the
decibel scale. Subsequently, the values are transformed into
Sone values, in order to approximate the loudness sensation
of the human auditory system.

From this representation of a segment’s spectrogram a
number of statistical moments is computed, in order to de-
scribe fluctuations within the critical bands: mean, median,
variance, skewness, kurtosis, min- and max-value are com-
puted for each critical band, forming the SSD feature set.
The feature vector for an audio file is then constructed as the
median of the SSD features of the extracted file segments.

2. Distance Matrix Calculation

As the the implementation of similarity ranking and accord-
ing distance measures in our Java software has not yet been
completed, we run the distance matrix calculation for the
Audio Music Similarity and Retrieval task in Matlab. The
feature vector file written by the Java Audio Feauture Ex-
traction program is read into matlab. The distance matrix is
calculated using the cityblock metric. The Matlab function
then writes the distance matrix to the file format specified
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on the MIREX task Wiki. Several types of evaluations are
to be carried out from this distance matrix.

3. Performance
The Audio Feature Extraction roughly estimated takes about
17 hours on a 3.0 Ghz CPU for 5000 wav files. Distance
Matrix Computation is estimated to take about 15 to 30 min-
utes.

Disk space requirements:

• Feature vector file: 15 MB

• Distance Matrix: 260 MB

NB: The Audio Feature Extractor writes quite a lot of
useful logging to standard output, e.g. the audio file pro-
cessed, the estimated remaining time and also which seg-
ment of the file is currently processed.
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Abstract
Today, among the best-performing algorithms for music

similarity computations are algorithms based on Mel Fre-
quency Cepstrum Coefficients (MFCCs). In these algorithms,
each music track is modelled as a Gaussian Mixture Model
(GMM) of MFCCs. The similarity between two tracks is
computed by comparing their GMMs. As pointed out in
[1, 2, 3], the distance space obtained this way has some un-
desirable properties. In this MIREX’06 submission, a tech-
nique has been implemented that aims to correct such anom-
alies to a certain extent1 . The described algorithm ranked
second (out of six) in the MIREX evaluation based on hu-
man listeners (note that the differences between the top-five
ranked algorithms are not statistically significant). There is
indication that it works better for artist identification than
the other submitted algorithms.

1. Feature Extraction and Basic Distance
Computation
The basic feature extraction process is quite similar to the
one in [5]. It was chosen because its good tradeoff between
runtime and quality, and because algorithms based on re-
lated techniques yielded good results in MIREX’05.

• The input wave files (22.050 Hz sampling rate, mono)
are divided into frames of 512 samples length, with
256 samples overlap, disregarding the first and last 30
seconds.

• The number of frames corresponding to 2 minutes
(i.e. 20.672 frames) are used for feature extraction. In
the submitted algorithm, these frames are not chosen
to be consecutive. Instead, the length of the wave data
is divided into 20.672 fragments of equal length, and
from each of those fragments, randomly 512 consec-
utive samples are chosen for feature extraction. By
randomly choosing the frames possible aliasing ef-
fects with respect to the track’s meter are reduced.
It seems that this approach yields better results than
choosing the frames in a fully random manner, or tak-
ing all frames from the two minutes in the middle of
the track.

• From the chosen frames, 25 MFCCs are computed.

1 For more detailed evaluations, please refer to [4]

• A song is represented as the overall mean of the MFCCs,
and the full covariance matrix.

The feature extraction process was implemented using the
MA-Toolbox ([6]). Two songs are compared by the Kullback-
Leiber (KL) distance. If the inverse of a song’s covariance
matrix can not be found, it is assumed that it is dissimilar to
all other songs.

One drawback of this technique is that it does not take
into consideration the temporal order of frames, thus aspects
related to time are not modelled. An approach to add time-
dependent features is propsed in [2]. However, the version
used here it is a good starting point for the post-processing
step described in the next section.

2. Post Processing

As pointed out in [1, 2, 3], the distance space obtained with
such an algorithm has some undesired properties. Some
tracks may be very similar to many other tracks (so-called
“hubs” [3], e.g. in a collection containing about 2.500 tracks,
one track may appear in the ten nearest neighbours of 250
other tracks). Also, there may be tracks that arenot similar
to other tracks. Reducing the effects of these properties may
improve the quality of the algorithm’s output. One could
think of various ways to approach this, including those de-
scribed below.

2.1. Calculations on the Distance Matrix

After computing the distance matrix of all tracks in a col-
lection, all values in a column and all values in a row are
divided by the distance of the (e.g.) 25th nearest neighbour
of the track that corresponds to the index of this row or col-
umn, respectively. On in-house collections, this typically
improved the leave-one-out 5 nearest neighbour (NN) genre
classification by one or more percent points, depending on
the collection.

In the MIREX’06 audio similarity contest, it is not al-
lowed to use such knowledge about the whole collection
for which the distances should be computed (thetest col-
lection). Thus, it would be necessary to provide the models
of another collection (thereference collection), that serves
for reference during the (pairwise) distance computationsof
the contest.

As it turned out in preliminary experiments, using a refer-
ence collection for this approach did not work satisfactorily
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in all cases. Thus, no further investigations into this direc-
tions were made2.

2.2. Counting the Number of Appearances in k-NN Sets

Another possible approach is to determine for each pieceA

of the test collection a measure which is calledk-occurrences.
For calculating this, it is assumed thatA is part of the ref-
erence collection. Count how often it appears in the set of
k nearest neighbours (e.g.k = 10) of tracks in the ref-
erence collection. Thek-occurrence may then be used to
either filter out those pieces with a highk-occurrence, or to
accordingly modify the distances of trackA to other tracks
in the test collection. However, this approach has not been
tested yet because the approach described in the next section
showed to be effective in preliminary experiments. Thus, an
evaluation of this approach is left as future work2 .

2.3. Proximity Verification

The basic idea behind this approach is to replace the ab-
solute distance (obtained by computing the KL distance) by
a relative distance based on the ranking of tracks. Thus, the
divergence of track A and B, denotedD(A, B), is k, where
B is thek nearest neighbour ofA (i.e. there areD(A, B)−1
other tracks in the collection that are more similar toA than
B, measured by the KL distance).

As in generalD(A, B) 6= D(B, A), a symmetric dis-
tance measure is obtained by defining

DPV = D(A, B) + D(B, A)

This approach is calledproximity verificationhere, asDPV

has a low value only if bothA is a close neighbour ofB
and B is a close neighbour ofA. Obviously, the average
value of the divergence between trackA and all tracksTi

in the collection1

N

N∑

i=1

D(A, Ti) is the same, regardless if a

trackA is determined by initial similarity algorithm as being
similar to many other tracks, or if it even is regarded as being
dissimilar to all other tracks. Thus, these effects are reduced.

Again, in the MIREX contest, as it is not allowed to use
knowledge about the test collection,DPV (A, B) has to be
determined on the models of a reference collection, with the
models of tracksA andB being the only information avail-
able from the test collection. In the submitted implementa-
tion, this results in values forD(A, B) that are usually not
integers, as the rank ofB is interpolated.

2.3.1. Preliminary Evaluation

Preliminary experiments on in-house test collections and on
the ISMIR’04 Genre Classification Contest Training Col-
lection indicate that this approach also is beneficial when
using a reference collection for post processing instead of
using the test collection itself. Another tendency seems to

2 In the meantime, further work is available [4].

be that merits are larger when using a larger reference col-
lection. Examples of evaluation results with the largest pos-
sible reference collection consisting of all available tracks
(more than 8.000, including the tracks in the test collection,
and some tracks multiple times) are given below3 . The test
collection consists of 2447 tracks from 22 genres.

Tables 1 and 2 show that the percentage of the closest
tracks that are in the same genre is improved by applying
proximity verification. These results are quite promising;
however, on the ISMIR’04 Genre Classification Contest Train-
ing Collection, the corresponding 5-NN value was only im-
proved by approximately1.4% before artist filtering.

No Artist Filter 5 10 20 50
Basic 67.9% 60.8% 51.8% 39.1%
ProxiVeri 73.2% 66.5% 56.1% 42.8%

Table 1. Percentage of closestn tracks of each track that
are in the same genre forn = {5, 10, 20, 50}, withoutartist
filter. Basic is the basic algorithm described in Section 1,
ProxiV eri is the same algorithm with additional proximity
verification.

With Artist Filter 5 10 20 50
Basic 28.6% 26.9% 25.0% 21.3%
ProxiVeri 31.2% 29.8% 27.8% 24.1%

Table 2. Percentage of closestn tracks of each track that are
in the same genre forn = {5, 10, 20, 50}, with artist filter.
Same algorithms as in Table 1.

Figure 1 indicates that proximity verification has a posi-
tive effect both on the number of tracks that are considered
as being similar to many other tracks, and on the number of
tracks that are similar to only few other tracks in the col-
lection. Also, there is a positive effect on the number of
track triples where the triangle inequality is fulfilled (e.g.
the number of track triples where it is not fulfilled dropped
from about41% to about32%).

3. Conclusions

The main motivations for submitting this algorithm to
MIREX are to compare the properties of the resulting sim-
ilarity space to the other submissions, and also to get feed-
back about how human evaluators assess its performance.
Future work includes an in-depth evaluation of the proposed
post processing approaches, and – most importantly – their
application to other feature extraction routines and distance
measures, most notably such that model time aspects of the
music signal.

3 More detailed evaluations are future work. In particular, evaluations
with reference collections that are smaller than the test collection are im-
portant.
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Figure 1. 10-occurrences before and after proximity verifi-
cation. The y-axis is cut off at252, corresponding to the sec-
ond highest value before proximity verification. The highest
value is359. The highest value after proximity verification
is 64.

4. Comments on the MIREX results
This final section contains a brief discussion of the MIREX
results. The most important performance measure is the lis-
tening test, as the other measures do not directly take into
account how the songs that were rated “most similar” actu-
ally sound.

4.1. Listening Test Results
The algorithm described in this abstract (“TP”) ranked sec-
ond in the listening tests. However, from the six submit-
ted algorithms, the differences of the top five ranked algo-
rithms were not statistically significant. This was the first
MIREX AudioSim with a listening test, so there were no
previous results that could be used to design the experimen-
tal setup. Knowing that the state-of-the-art algorithm have
close scores in this listening test, for future evaluationsa
modified setup (e.g. more queries, a more diverse music
collection) could be considered to improve the significance
of the results.

4.2. Distance Matrix Statistics
Several metrics were calculated on the distance matrices that
were produced by each of the submitted algorithms. Many
of them use the genre labels of the songs. Unfortunately, the
number of tracks per genre were very skewed, and the genre
labels probably are not assigned very carefully. For exam-
ple, Britney Spears was classified as Rock, and the music
from the genre Rap & Hip-Hop and Rock constituted more
than70% of the collection. Thus, the results of these metrics
should be regarded very cautiously.

In micro-averaged5-NN genre classification, TP ranked
first when no artist filter was used. If the genre labels are
considered near noise, then this result may indicate that TP

is better suited for artist identification than the other sub-
missions, which is consistent with the results of last year’s
MIREX, and the observation that TP produced the lowest
Artist / Genre ratio (i.e., the ratio of the distance between
tracks of the same artist and the distance of tracks of the
same genre).

4.2.1. Always Similar
One of the motivations for using proximity verification was
to remove hubs. To my knowledge, only one of the other
submitted algorithms (G1C) makes use of a technique that
is known to potentially produce hubs. Depending on if the
cover song tracks were also considered for calculating the
k-occurrences, the statistics were different. When they are
considered, the highest50-occurrence of G1C is2058, indi-
cating the presence of a hub. It turns out that when not re-
garding the cover song tracks, there seems to be no hub for
G1C. In the latter case, the highest50-occurrence of G1C is
434, which is within the range of the other algorithms. The
corresponding values of TP were 557 and 554, respectively.
These values seem acceptable for non-hub tracks, although
for a final decision, it would be necessary to listen to the
tracks with the highestk-occurrences.
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Abstract
This submission to the Music Information Retrieval Eval-

uation eXchange in the Symbolic Melodic Similarity task
uses ideas from the system that used the Earth Mover’s Dis-
tance (EMD) in MIREX 2005. The total weight sums are
normalized before applying the EMD, which makes it pos-
sible to use a vantage index. A novel way of segmenting
is used. Response times are shortened from 14 hours for
searching 581 short monophonic incipits to 3 seconds for
searching 1000 complete polyphonic pieces of music. This
speedup made it possible to put more effort into searching
accurately by searching multiple segment sizes at the same
time. Therefore, the new method should not only be faster
but also more effective.

We submit this algorithm not only for the Sym-
bolic Melodic Similarity task, but also for Query by
Singing/Humming. For the latter, we rely on the MIDI files
provided by J.-S. Roger Jang (5z�) instead of splitting
the given pitch vectors into notes ourselves or working with
the wave files.

Keywords: MIREX, symbolic melodic similarity, query by
humming/singing.

1. Tasks
At the MIREX competition1 , algorithms from different re-
searchers are compared by letting them solve the same tasks,
using the same data. This extended abstract describes a sub-
mission to two out of the nine tasks at MIREX 2006.

1.1. Symbolic Melodic Similarity
The task is to retrieve MIDI files that contain material which
is melodically similar to a given MIDI query. Half the queries
are quantized in rhythm and pitch, and half are only quan-
tized in pitch but not in rhythm. The latter half was created
by singing melodies.

1 MIREX 2006:http://www.music-ir.org/mirex2006

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
c© 2006 University of Victoria

There are three subtasks that differ mainly in the collec-
tion of data to be searched:

• Approximately 16,000 incipits from the UK subset of
the RISM collection, almost exclusively monophonic.
Six queries (three of them quantized).

• 1000 polyphonic Karaoke files. Five queries (two of
them quantized; the three sung queries include two
versions of the same melody).

• 10,000 randomly chosen MIDI files that were har-
vested from the Web, most of them polyphonic. Six
queries (three of them quantized).

Due to the size of the collections, no ground truth was
known in advance. From every participating algorithm, the
top ten matches are put into a pool, and human graders judge
the relevance.

1.2. Query by Singing/Humming

The Query by Singing/Humming task is split into two sub-
tasks which are strongly influenced by the character of avail-
able data. For a collection of 48 MIDI files containing quan-
tized melodies, 2719 sung versions are available as Wave
files. For every recording, a pitch vector and a MIDI file
were derived. Participants can choose whether to use the
audio, pitch vector or MIDI files for answering queries.

1.2.1. Subtask 1: Known-Item Retrieval Task

Based on Prof. Jang’s original idea to test for the ability to
find the “ground-truth” needle in a collection “haystack”.

• Test database: 48 ground-truth MIDIs +∼ 2000 Es-
sen Collection MIDI noise files.

• Queries: 2719 sung queries.

• Evaluation: Mean Reciprocal rank, over top X re-
turns, of the “know-item” ground-truth file for each
sung query

1.2.2. Subtask 2: Variants Retrieval Task

Based on Prof. Downie’s idea that queries are variants of
ground-truth.
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• Test database: 48 ground truth MIDIs +∼ 2000 Essen
MIDI noise files + 2719 sung queries.

• Queries: 2719 sung queries + 48 ground truth MIDI
files.

• Evaluation: Classic precision and recall over X top
returns.

2. Indexing
2.1. Splitting polyphonic files into voices

As a preparation for indexing, every MIDI file is split into
channels and tracks. It is assumed that every voice is stored
in either its own track or channel. In a second step, a skyline
algorithm is applied to make each of these extracted voices
monophonic.

Even in cases where a voice jumps back and forth be-
tween channels or tracks, it can still be searched as long
as it stays in one channel or track for at least the minimum
segment length (see the next section for a description of seg-
menting).

2.2. Segmenting

Depending on the collection to be searched, the monophonic
voices are split into overlapping segments of varying lengths.
If the index size is not a limiting factor (because the col-
lection size is sufficiently small or the computer to be used
has enough memory), the segment sizes vary from 5 to 16
consecutive notes. For the collection of 10,000 MIDI files,
space on the testing machines was so tight that we could
only create segments of sizes 5, 6, and 7. At every note in
the voice, a segment of every size begins (unless there are
fewer notes left in the piece than necessary for creating a
segment of the desired length).

Note that in both cases, the space complexity isO(N),
whereN is the total number of notes in all pieces to be in-
dexed.

2.3. Vantage indexing

For every segment, the distance to each of a small, fixed set
of vantage objects [3] is calculated. As distance measure,
the “Proportional Transportation Distance” [5] is used (this
is the “Earth Mover’s Distance”, preceded by a weight nor-
malization such that both weighted point sets have the same
total weight).

Later, to answer queries with the vantage index, the dis-
tances between the query and each vantage object are cal-
culated, and objects with similar distances to the vantage
objects are retrieved from the database. This can be done
efficiently with range queries that are supported by B-trees,
and it does not involve any expensive EMD calculations ex-
cept for the comparisons of the query with the small, fixed
set of vantage objects.

3. Searching
3.1. Searching an index with many segment lengths
If the index contains segments of length 5 to 16, the query
is truncated to 16 notes (if it is longer), and all segments are
searched for this possibly truncated query using the vantage
index [3]. By not only searching segments with the same
length as the query, added or dropped notes, as well as grace
notes and other embellishments do not necessarily lead to
mismatches but just increase the distance a bit.

In a second step, for the top 50 returned items, the real
distance is calculated instead of the estimate that is basedon
the vantage index. Finally, the top 10 items demanded in the
task description are returned.

3.2. Searching an index with just three different seg-
ment lengths
If the index only contains segments of length 5, 6, and 7,
the query is cut into segments of length 6. For each query
segment, the vantage index is searched. Again, for the top
50 returned segments, the real distances are calculated (for
each query segment). Finally, these partial results are com-
bined as described in [5]. That is, an optimum combination
of query segments is found that match a piece in the same
relative positions as their positions within the query, such
that the segments’ average distance is minimized and the
coverage of the query is maximized.

3.3. Considerations for matching documents that are
shorter than the query
For the RISM UK collection of musical incipits, one might
want to retrieve documents that are shorter than the query,
while this case is very unlikely for a collection consistingof
complete pieces. To support this possibility for the RISM
subtask, even though the incipits are split into segments of
5 to 16 consecutive notes, the query is not just capped at 16
notes as described above, but split into segments of varying
sizes from 5 consecutive notes up to either 16 or the length
of the query, whatever is lower. That way, shorter incipits
can be matched to parts of the query, but the whole query
can still be matched to longer incipits in one comparison.

Currently, perfect matches of a whole incipit that is
shorter than the query lead to a distance of zero, and so do
perfect matches of the whole query with parts of a longer
incipit. Assigning different distances (a lower distance to
the latter case, where more notes match), would be an im-
provement, but one would need to investigate how big such
a difference should be in order to agree with human ideas of
similarity.

3.4. The Query by Singing/Humming task
We submit our algorithm not only for Symbolic Melodic
Similarity but also for the Query by Singing/Humming task.
However, we do not analyze the wave or pitch vector files,
but instead work only with the MIDI files provided by J.-S.
Roger Jang along with the collection of queries. By doing
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Figure 1. Task I: RISM Overall Summary. See Section 4.1.2
for an explanation of the measures. The methods are: RT -
the method described in this paper; FH - an editing distance
for quotiented trees by Pascal Ferraro and Pierre Hanna [2],
KF is a hybrid distance measure by Klaus Frieler and Daniel
Müllensiefen, AU is Alexandra Uitdenbogerd’s Start-Match
Alignment technique, and NM is the geometric ”P3” algorithm
by Kjell Lemstr öm, Niko Mikkil ä, Veli Mäkinen and Esko
Ukkonen. For a more detailed description of these methods,
see the MIREX abstracts, available from http://www.music-
ir.org/mirex2006/index.php/SymbolicMelodic Similarity Results

so, we avoid the need to change the algorithm at all, but any
error in his conversion from Wave to MIDI will reduce our
performance.

For this task, we submit the algorithm with both indexing
variants – with segments of lengths 5 to 16 and with seg-
ments of lengths 5, 6, and 7. We treat the queries the same
way as for the Symbolic Melodic Similarity task, that is, if
we have many segment lengths, we cut the query at 16 notes,
while for just three different segment lengths, we segment
the query into segments of length 6. Since it is known that
in Jang’s collection, the queries match the database items
only at the beginning, we index only the first 25 notes of
every item.

The variant with fewer segment lengths needs less space
for the index (only three segments start at every note instead
of eleven), but requires more computing time for answering
queries since there are multiple segment searches, and their
results need to be consolidated into one overall result.

4. Results, Analysis
4.1. Symbolic Melodic Similarity
4.1.1. Building a ranked list from relevance scores

The raw ground truth data consisted of a rough and a fine
relevance score for every item that was returned by an algo-
rithm. For the rough score, a scale of “very similar”, “some-
what similar”, and “not similar” was used, while the fine
score was just a number between 0 and 10. For the poly-
phonic tasks, where algorithms returned excerpts of MIDI
files but not whole MIDI files, separate relevance scores

Figure 2. Task IIa: Karaoke Overall Summary

were collected for each excerpt, even if there were multi-
ple excerpts from the same MIDI file.

For some measures, an ordered list of relevant items is
necessary. These ordered lists were created as follows from
the collected relevance scores:

• Calculate average scores for every MIDI file; these
averages were taken from three human graders if a
MIDI file was returned by only one algorithm, or by
a multiple of three people if multiple algorithms re-
turned the same polyphonic MIDI file.

• For each query, order the matches first by the rough
and, in case of ties, by the fine score.

• Group together matches with the same average rough
score.

• Only include items with average rough scores of bet-
ter than “somewhat similar”.

• If the resulting list is longer than 10, remove whole
groups at the end until at most 10 items remain; there
was one exception where the top group had 11 “very
similar” items.

4.1.2. Measures
The following measures were used (these abbreviations are
used in Figures 1, 2, and 3):

• ADR = Average Dynamic Recall [4].

• NRGB = Normalized Recall at Group Boundaries.

• AP = Average Precision (non-interpolated).

• PND = Precision at N Documents.

• Fine = Sum of fine-grained human similarity deci-
sions (0-10).

• PSum = Sum of human broad similarity decisions:
NS=0, SS=1, VS=2.
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Figure 3. Task IIb: Mixed Polyphonic Overall Summary

• WCsum = ’World Cup’ scoring: NS=0, SS=1, VS=3
(rewards “very similar”).

• SDsum = ’Stephen Downie’ scoring: NS=0, SS=1,
VS=4 (strongly rewards “very similar”).

• Greater0 = NS=0, SS=1, VS=1 (binary relevance
judgement).

• Greater1 = NS=0, SS=0, VS=1 (binary relevance
judgement using only “very similar”).

All measures are normalized such that they lie in the range
from 0 to 1.

4.1.3. Monophonic Task

For the monophonic task, there were no significant
performance differences between our method and the
editing distance for quotiented trees by Pascal Fer-
raro and Pierre Hanna [2], [1]. When looking
at the actual result lists – they are available at
http://rainer.typke.org/mirex06.0.html – the main difference
between the results of these two methods seems to be that
the latter is more likely to retrieve rather short matches
(compare, for example, http://rainer.typke.org/qr3-fh.0.html
and http://rainer.typke.org/qr3-rt.0.html). In some cases,
this might have lead to a lower average precision or av-
erage dynamic recall, like for example in the case of
http://rainer.typke.org/qr6-fh.0.html, where short matches
pushed nice longer ones down to lower ranks.

The other methods performed worse than ours and Fer-
raro’s/Hanna’s, no matter which measure is used.

4.1.4. Polyphonic Tasks

For both polyphonic tasks, our method outperforms the
other methods.

Besides the obvious difference in the number of notes
that can sound at the same time, the polyphonic collections
also differ in other ways from the monophonic RISM col-
lection:

• Both polyphonic collections were random sets of files
that were harvested from the Web. Because of this,
the encoding quality was not as homogeneous as for
the RISM collection. Some files in the polyphonic
collection were not syntactically correct MIDI files.

• While the RISM collection was created from
plaine&easie code and therefore rhythmically quan-
tized, the polyphonic collections contained both quan-
tized music and renditions of performances, where
neither onset times nor note durations were exactly
the same as what one would find in a written score.

When looking at Figures 2 and 3, it is very noticeable
that the six rightmost measures, which were not based on
the ranked lists described in Section 4.1.1, indicate a much
worse performance for the Karaoke task for all algorithms.
The reason is that the Karaoke collection was much smaller
(1000 items instead of the 10,000 items in the mixed collec-
tion) and therefore contained fewer good matches to begin
with. Even an ideal algorithm can therefore not reach a score
of 1 for measures such as “Fine” for the Karaoke collection.
The four measures on the left side compare the algorithms’
outputs with the ground truth lists.

4.2. Query by Singing/Humming
No algorithm that relied on the provided MIDI files turned
out to be very successful. These MIDI files contained many
incorrectly recognized additional notes with more or less
random pitches.The most successful algorithm that used the
MIDI files provided by Jang, NM, performed an exhaustive
depth-first search trying to scale the pattern note-by-noteto
fit the song, with costs applied to local time-scaling, note
duration changes and pitch-shifting (note that this is not the
same algorithm as the “symbolic” NM algorithm). Our al-
gorithm performed relatively poorly because it looked for
matches forall query notes, including the random added
notes, without the possibility of reducing the importance of
individual query notes. The NM algorithm is able to se-
lectively ignore query notes that do not fit any note in a
matching piece. For a similar effect with our method, we
would need to skip the weight normalization step and there-
fore work with a pure EMD. However, this would reduce
the effectiveness of vantage indexing – it would remove the
guarantee that indexing does not lead to false negatives.

Many of the successful algorithms used symbolic ap-
proaches; for example, Xiao Wu and Ming Li use a tran-
scription to notes for filtering out candidates for matches,
followed by a final scoring on the frame level. Christian
Sailer as well as Ernesto Lopez and Martı́n Rocamora do all
matching in the symbolic domain after transcribing the au-
dio signal to notes. An important reason for such hybrid ap-
proaches outperforming our method was that they used their
own elaborate methods for transcribing the audio signal into
notes.
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Task I (MPR) Task II (Mean Precision) Uses audio or MIDI

XW1 (Xiao Wu and
Ming Li)

0.926 no entry audio

XW2 0.900 no entry audio
RJ (Roger Jang and
Nien-Jung Lee

0.883 0.926 audio

RL (Ernesto Lopez
and Martı́n Ro-
camora)

0.800 no entry audio

NM 0.688 0.722 MIDI
CS1 (Christian
Sailer)

0.568 0.587 audio

RT2 0.390 0.401 MIDI
CS3 0.348 0.415 audio
AU2 0.288 0.238 MIDI
CS2 0.283 0.649 audio
FH 0.218 0.309 MIDI
AU1 0.205 0.163 MIDI
RT1 0.196 0.468 MIDI

Table 1. Overall results for QBSH. NM, RT, AU, and FH use Jang’s MIDI files, while the other methods do their own note transcrip-
tion (except for RJ’s pure audio approach). RT2 segments thequeries, while RT1 does not. There seems to be a strong correlation
between using the provided MIDI files and poor overall performance. For detailed descriptions of the various methods, see the
MIREX abstracts at http://www.music-ir.org/mirex2006/i ndex.php/QBSH: Query-by-Singing/Humming Results

Maybe one can learn from this experience that sym-
bolic approaches can be valuable for searching large au-
dio databases because they can make searches very efficient
without necessarily ruining the quality of results, especially
if the last scoring step is again done in the audio domain and
therefore avoids the problems that note transcription intro-
duces. After reducing the number of candidates for matches
by using an efficient symbolic method, one can afford more
expensive, but effective audio analyses since they only need
to be done for a small number of items.
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Abstract
For this submission to MIREX, we again provided a simple
baseline for comparison with other submissions. For short
incipit queries we used a form of dynamic programming
on melody strings that enforces matching from the start of
the strings — a technique we call Start-Match Alignment.
There is some evidence that this technique is better than lo-
cal alignment for short queries and incipits.

For the query by humming track we used both local align-
ment and Start-Match Alignment. It seems that for this col-
lection, query set and relevance set, Start-Match Alignment
works better than local alignment on average. Our algo-
rithms were the fastest of those submitted for the symbolic
search tasks, and for the polyphonic symbolic task had very
good effectiveness.

Keywords: melody matching, music retrieval

1. Introduction
Our entry in the Symbolic Melodic Similarity (SMS) and
the Query by Singing/Humming (QBSH) tracks of the 2006
round of MIREX used one of the techniques shown in cur-
rently unpublished work to be more effective than local
alignment under some circumstances. We call this particu-
lar matching technique “Start-Match Alignment”, as it finds
the best match between two strings, where the match is en-
forced to commence at the start of the strings.

The start-match technique is applied atop the basic
melody extraction and melody standardisation techniques of
our three-stage melody matching model [2]. It is our belief
that this combination of techniques leads to robust match-
ing. With the application of current efficient programming
methods, the approach can be used to produce a practical
system for purely symbolic matching. Our techniques had
yet to be tested on hummed queries, so it was interesting to
see that the techniques don’t appear to work as well as those
that are optimised for such queries.
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2. Techniques
The family of music matching techniques our team have
developed are based around the 3-stage melody match-
ing model: melody extraction, melody standardisation, and
melody matching. For monophonic queries this simplifies
to just the second and third stage of the model.

In this submission we use the melody extraction tech-
nique allmono originally developed and tested in earlier
work [3, 4, 5]. Similarly, we use the directed modulo-12
approach to standardisation, which is a convenient simplifi-
cation of pitch interval strings into a smaller representation
that can be mapped into alphabetic characters (a concept
used by Hawley in earlier work [1]). Since the represen-
tation is purely based on pitch, variations in tempo between
a sung query and the target piece of music will not affect the
ranking.

The melody matching technique used for this submis-
sion is a little different to our earlier work. Based on
work that is currently in submission, the approach enforces
matching of strings from the start of the strings until a best
matching length is found. This technique, which we have
named Start-Match Alignment, initialises and fills the array
in the manner of global alignment, but, in the manner of lo-
cal alignment, returns the highest score within the matrix.
The equation used to calculate each cell’s value is the same
as for global alignment.

a[i, j] = max



















a[i − 1, j] + d i ≥ 1
a[i, j − 1] + d j ≥ 1

a[i − 1, j − 1] + e p(i) = t(j) and i, j ≥ 1
a[i − 1, j − 1] + m p(i) 6= t(j) and i, j ≥ 1

0 i, j = 0
(1)

where d is the cost of an insert or delete, e is the value of
an exact match, m is the cost of a mismatch, i and j are
non-negative integers, p(i) represents the ith symbol in the
“pattern” or query, and t(j) represents the jth symbol in the
“text”, or potential answer string. The weights we used were
1 for a match, −1 for a mismatch, and −2 for an insert or
delete (indel).

Each melody string in the collection is compared to the
query string, with ranking based on the computed alignment
score. The higher the alignment score, the more similar the
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two strings are assumed to be.
For QBSH we chose to use the above algorithm in addi-

tion to standard local alignment of the standardised melody
strings. Local alignment locates the best substring match
between two strings, regardless of where the match occurs
and its length.

Due to a slip-up in the script preparation, our submission
for the SMS tasks normalised the score by dividing by the
log of the length of the track (in number of symbols plus
one) against which the query was being compared. Results
on our collection suggest that this is slightly less effective
than not normalising. See the Discussion section for possi-
ble reasons.

3. MIREX Tasks and Results
SMS task 1 consisted of incipit queries matched against the
RISM collection of incipits. Half of the queries were tran-
scriptions of a hummed or whistled source. Both collection
and queries were monophonic. In this task our technique
was ranked in the middle of the set of algorithms. It was
one of three techniques that used an “indexing” phase. The
query time was the fastest, being 31 seconds, with the next
shortest being 59 seconds. At 64 seconds, the sum of the
indexing and querying times was 4 seconds shorter than the
fastest query-phase-only submission.

SMS task 2 involved search for melodies in a polyphonic
collection. Of the five algorithms, Start-Match was ranked
second across various measures of effectiveness. The query
time was faster than all other submissions, as was the index-
ing time.

The QBSH tasks used a very large collection of sung
queries against a monophonic collection consisting of 48
ground truth quantised melodies in addition to the Essen col-
lection of folk songs. For this task our best algorithm per-
formed poorly compared to other submissions (eighth out of
thirteen for task 1 and second last for task 2). However, it is
clear that the Start-Match algorithm was more effective than
local alignment. Once again our submission was very fast
compared to other entrants.

4. Discussion
This particular submission was not optimised for speed. Re-
taining the collection strings in memory, or using a com-
pressed form for matching would be much faster, as would
the use of a heap for retaining the top 10 results. Despite the
above, the submission was the fastest at answering queries
in both tasks of the SMS track.

As mentioned earlier, the SMS submission inadvertently
applied normalisation to the alignment scores. When tested
on our own collection this leads to slightly worse effec-
tiveness. On spending considerable time examining the re-
trieved answers to the queries, it became clear that a rea-
son normalisation may be unhelpful is that the length of the
track was used, and not the length of the entire piece. This

can lead to short bits of accompaniment getting much higher
scores than warranted. Despite this liability, our submission
was in the middle range for effectiveness in SMS task 1, and
the second most effective algorithm for task 2.

For the QBSH tasks, there was an obvious difference
in effectiveness results between those algorithms working
directly with the WAV files, and those using the provided
MIDI. There may have been errors introduced into the MIDI
files at the time of manual transcription (as suggested by the
organiser), which made the task more difficult. While our
technique was the fastest for these tasks, the use of MIDI
files instead of WAV meant that less processing was required
than some of the other submissions, making some compar-
isons meaningless.

The lack of success in task 2 of QBSH for Start-Match
may in part be attributed to the types of errors found in sung
queries. The alignment approach we used causes two sym-
bols to be incorrect when a single note error occurs in a
query, such as a wrong note substituted for a correct note.
This can cause the penalty to be too great when matching
some query-melody pairs. There are more robust techniques
for this alignment problem that we intend to apply in the fu-
ture.

An issue that seems apparent is that algorithms work best
on collections and queries most similar to those that re-
searchers have used for their development. Our algorithms
were developed on monophonic symbolic queries against a
polyphonic collection, and they worked best on these. Typke
et al.’s development has largely been on incipit collections,
and this led to excellent results for that domain. Jang et al.’s
familiarity with the use of sung queries appeared to pay off
in the QBSH track. Rather than being an issue of fair-play, it
highlights what is known about training and test collections.
It also makes clear that the assumptions about the nature of
the collection and queries results in different choices for op-
timal algorithms.

5. Conclusion
MIREX 2006 evaluation has shown that a simple alignment
technique applied to pitch interval strings is still competitive
for some symbolic query and collection types, but doesn’t
handle sung queries quite as well as other approaches that
were submitted. Future work for our team should include
experimentation with sung query sets.
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Abstract
BeatRoot is an interactive beat tracking system which has
been used for several years in studies of performance tim-
ing. In this new version, some of the weaknesses of the
original system have been addressed. The original simple
onset detection algorithm, which caused problems for beat
tracking music without prominent drums, has been replaced
with a more robust onset detector. Several new features have
been added, such as annotation of multiple metrical levels
and phrase boundaries, and improvements in the user in-
terface. Also, the new version has been written entirely in
Java, so that it runs on all major platforms. The beat track-
ing algorithm remains largely unchanged: BeatRoot uses a
multiple agent architecture which simultaneously considers
several different hypotheses concerning the rate and place-
ment of musical beats, resulting in accurate tracking of the
beat, quick recovery from errors, and graceful degradation
in cases where the beat is only weakly implied by the data.

Keywords: MIREX, tempo induction, beat tracking.

1. Introduction
Compared with complex cognitive tasks such as playing chess,
beat tracking (identifying the basic rhythmic pulse of a piece
of music) does not appear to be particularly difficult, as it is
performed by people with little or no musical training, who
tap their feet, clap their hands or dance in time with music.
However, while chess programs compete with world cham-
pions, no computer program has been developed which ap-
proaches the beat tracking ability of a good musician.

As a fundamental part of music cognition, beat tracking
has practical uses in performance analysis, perceptual mod-
elling, audio content analysis (such as for music transcrip-
tion and music information retrieval), and the synchronisa-
tion of musical performance with computers or other de-
vices. The previous version of BeatRoot [1, 2] was used in a
large scale study of interpretation in piano performance [3,
4] to create symbolic metadata from audio CDs for auto-
matic analysis of performance timing.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
c© 2006 University of Victoria

In this paper we describe the new version of BeatRoot,
a system which models the perception of beat by two inter-
acting processes: the first finds the rate of the beats (tempo
induction), and the second synchronises a pulse sequence
with the music (beat tracking). A clustering algorithm finds
the most significant metrical units, and the clusters are then
compared to find reinforcing groups, and a ranked set of
tempo hypotheses is computed. Based on these hypothe-
ses, a multiple agent architecture is employed to match se-
quences of beats to the music, where each agent represents
a specific tempo and alignment of beats with the music. The
agents are evaluated on the basis of the regularity, continu-
ity and salience of the onsets corresponding to hypothesised
beats, and the highest ranked beat sequence is returned as
the solution. The user interface presents a graphical repre-
sentation of the music and the extracted beats, and allows
the user to edit and recalculate results based on the editing.
More complete descriptions of the algorithms can be found
in [1, 5].

2. BeatRoot Architecture
BeatRoot takes digital audio as input, and processes the data
off-line to detect salient rhythmic events. The timing of
these events is then analysed to generate hypotheses of the
tempo at various metrical levels. The stages of processing
are shown in Figure 1, and will be described in the following
subsections.

2.1. Onset Detection

Initial processing of the audio signal is concerned with find-
ing the onsets of musical notes, which are the primary car-
riers of rhythmic information. Earlier versions of BeatRoot
used a time-domain onset detection algorithm, which finds
local peaks in the slope of a smoothed amplitude envelope.
This method is particularly well suited to music with drums,
but less reliable at finding onsets of other instruments in a
polyphonic setting. In the current version it has been re-
placed with an onset detector which finds peaks in the spec-
tral flux. This method is described fully in [5].

Spectral flux sums the change in magnitude in each fre-
quency bin where the change is positive, that is, the energy
is increasing. First, a time-frequency representation of the
signal based on a short time Fourier transform using a Ham-
ming windoww(m) is calculated at a frame rate of 100 Hz.
If X(n, k) represents thekth frequency bin of thenth frame,
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Figure 1. System architecture of BeatRoot

then:

X(n, k) =

N
2 −1∑

m=−N
2

x(hn + m) w(m) e−
2jπmk

N

where the window sizeN = 2048 (46 ms at a sampling rate
of r = 44100 Hz) and hop sizeh = 441 (10 ms, or 78.5%
overlap). The spectral flux functionSF is then given by:

SF (n) =

N
2 −1∑

k=−N
2

H(|X(n, k)| − |X(n − 1, k)|)

whereH(x) = x+|x|
2 is the half-wave rectifier function.

Empirical tests favoured the use of theL1-norm here over
the L2-norm used in [6, 7], and the linear magnitude over
the logarithmic (relative or normalised) function proposed
by Klapuri [8].

2.2. Tempo Induction
The tempo induction algorithm uses the calculated onset
times to compute clusters of inter-onset intervals (IOIs). An
IOI is defined to be the time interval between any pair of
onsets, not necessarily successive. In most types of music,
IOIs corresponding to the beat and simple integer multiples
and fractions of the beat are most common. Due to fluctu-
ations in timing and tempo, this correspondence is not pre-
cise, but by using a clustering algorithm, it is possible to find
groups of similar IOIs which represent the various musical
units (e.g. half notes, quarter notes).

This first stage of the tempo induction algorithm is repre-
sented in Figure 2, which shows the events along a time line
(above), and the various IOIs (below), labelled with their
corresponding cluster names (C1, C2, etc.). The next stage
is to combine the information about the clusters, by recog-
nising approximate integer relationships between clusters.

Time
Events

IOI’s

A B C D E

C1 C1 C2 C1

C2

C3

C3

C4

C4

C5

Figure 2. Clustering of inter-onset intervals: each interval be-
tween any pair of events is assigned to a cluster (C1, C2, C3,
C4 or C5)

Time
Onsets

A B C D

Inner windows:

Outer windows:

Figure 3. Tolerance windows of a beat tracking agent predict-
ing beats around C and D after choosing beats at onsets A and
B

For example, in Figure 2, cluster C2 is twice the duration
of C1, and C4 is twice the duration of C2. This informa-
tion, along with the number of IOIs in each cluster, is used
to weight the clusters, and a ranked list of tempo hypotheses
is produced and passed to the beat tracking subsystem.

2.3. Beat Tracking

The most complex part of BeatRoot is the beat tracking sub-
system, which uses a multiple agent architecture to find se-
quences of events which match the various tempo hypothe-
ses, and rates each sequence to determine the most likely
sequence of beat times. The music is processed sequentially
from beginning to end, and at any particular point, the agents
represent the various hypotheses about the rate and the tim-
ing of the beats up to that time, and make predictions of the
next beats based on their current state.

Each agent is initialised with a tempo (rate) hypothe-
sis from the tempo induction subsystem and an onset time,
taken from the first few onsets, which defines the agent’s
first beat time (phase). The agent then predicts further beats
spaced according to the given tempo and first beat, using tol-
erance windows to allow for deviations from perfectly met-
rical time (see Figure 3). Onsets which correspond with the
inner window of predicted beat times are taken as actual beat
times, and are stored by the agent and used to update its rate
and phase. Onsets falling in the outer window are taken to
be possible beat times, but the possibility that the onset is
not on the beat is also considered.
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Figure 4. Beat tracking by multiple agents (see text for expla-
nation)

Figure 4 illustrates the operation of beat tracking agents.
A time line with 6 onsets (A to F) is shown, and below the
time line are horizontal lines marked with solid and hollow
circles, representing the behaviour of each agent. The solid
circles represent predicted beat times which correspond to
onsets, and the hollow circles represent predicted beat times
which do not correspond to onsets. The circles of Agent1
are more closely spaced, representing a faster tempo than
that of the other agents.

Agent1 is initialised with onset A as its first beat. It then
predicts a beat according to its initial tempo hypothesis from
the tempo induction stage, and onset B is within the inner
window of this prediction, so it is taken to be on the beat.
Agent1’s next prediction lies between onsets, so a further
prediction, spaced two beats from the last matching onset,
is made. This matches onset C, so the agent marks C as a
beat time and interpolates the missing beat between B and
C. Then the agent continues, matching further predictions to
onsets E and F, and interpolating missing beats as necessary.

Agent2 illustrates the case when an onset matches only
the outer prediction window, in this case at onset E. Because
there are two possibilities, a new agent (Agent2a) is created
to cater for the possibility that E is not a beat, while Agent2
assumes that E corresponds to a beat.

A special case is shown by Agent2 and Agent3 at onset
E, when it is found that two agents agree on the time and
rate of the beat. Rather than allowing the agents to dupli-
cate each others’ work for the remainder of the piece, one of
the agents is terminated. The choice of agent to terminate is
based on the evaluation function described in the following
paragraph. In this case, Agent3 is terminated, as indicated
by the arrow. A further special case (not illustrated) is that
an agent can be terminated if it finds no events correspond-
ing to its beat predictions (it has lost track of the beat).

Each agent is equipped with an evaluation function which
rates how well the predicted and actual beat times corre-
spond. The rating is based on how evenly the beat times
are spaced, how many predicted beats correspond to actual
events, and the salience of the matched events, which is cal-
culated from the spectral flux at the time of the onset. At

Figure 5. Screen shot of BeatRoot showing a 5-second excerpt
from a Chopin piano Etude (Op.10, No.3), with the inter-beat
intervals in ms (top), calculated beat times (long vertical lines),
spectrogram (centre), amplitude envelope (below) marked with
detected onsets (short vertical lines) and the control panel (bot-
tom)

the end of processing, the agent with the highest score out-
puts its sequence of beats as the solution to the beat tracking
problem.

2.4. Implementation
The system described above has been implemented with a
graphical user interface which allows playback of the music
with the beat times marked by clicks, and provides a graphi-
cal display of the signal and the beats with editing functions
for correction of errors or selection of alternate metrical lev-
els. The audio data is displayed as a waveform and spectro-
gram, and the beats are shown as vertical lines on the display
(Figure 5).

BeatRoot is written in Java and is available from:
http://www.ofai.at/˜simon.dixon/beatroot

3. Results
3.1. Testing
BeatRoot was tested on a range of different musical styles,
including classical, jazz, and popular works with a variety
of tempi and meters. The following results were obtained
with the previous version of BeatRoot, using test data con-
sisting of a set of 13 complete piano sonatas, a large collec-
tion of solo piano performances of two Beatles songs and
a small set of popular, jazz and latin songs. In each case,
the system found an average of over 90% of the beats [1],
and compared favourably to another (then) state-of-the-art
tempo tracker [9]. Tempo induction was in most cases cor-
rect, with the most common error being the choice of a mu-
sically related metrical level such as double or half the sub-
jectively chosen primary rate. The calculation of beat times
is also quite robust; when the system loses synchronisation
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Contestant P-Score (average) Run-time
Dixon 0.407 639
Ellis 0.401 498
Klapuri 0.395 1218
Davies 0.394 1394
Brossier 0.391 139

Table 1. Results of the MIREX 2006 Audio Beat Tracking Eval-
uation

with the beat, it usually recovers quickly to resume correct
beat tracking, despite the fact that the system has no high
level knowledge of music to guide it. Some audio examples
are available at:
http://www.ofai.at/˜simon.dixon

3.2. MIREX 2006 Results

BeatRoot performed best of the 5 systems submitted for the
MIREX 2006 Audio Beat Tracking Evaluation, as shown
in Table 1. The test data consisted of 140 files from a wide
range of musical styles, which had been annotated by around
40 people per file by tapping in time with the music. Al-
though this is a slightly different task than off-line beat track-
ing (see [10] for a discussion), it is a reasonable approach
for this evaluation, especially considering the difficulty of
creating or obtaining ground-truth data.

3.3. Discussion

Since the results have been summarised as a single score, we
do not know if the difference in performance between sys-
tems is significant, nor whether the systems’ choice of met-
rical levels was a deciding factor in these results. BeatRoot
is not programmed to select the metrical level corresponding
to the perceived beat, nor to a typical tapping rate; it tends to
prefer faster rates, because they turn out to be easier to track,
in the sense that the agents achieve higher scores. More de-
tailed results and analysis would be very interesting. An in-
teresting task for future years would be to test beat tracking
performance for a given metrical level (e.g. given the first
two beats or the initial tempo). It would also be interesting
to know the P-scores of the annotators (tappers), measured
on the basis of the other tappers’ data, to see how close this
year’s entries are to human beat tracking ability.
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Abstract
This paper describes an audio beat tracking algorithm sub-
mitted to the MIREX 2006 contest. The algorithm has been
described in detail in the article “Analysis of the Meter of
Acoustic Musical Signals” published in IEEE Trans. Au-
dio, Speech and Language Processing, 14(1), 2006. In sum-
mary, the method analyses musical meter jointly at three
time scales, of which only the beat (tactus) level is used in
this MIREX task.

Keywords: Musical meter analysis, beat tracking.

1. Introduction
The beat tracking algorithm employed here is identical to
that described in [1].1 The algorithm was originally imple-
mented by the author in 2003 and converted to C++ by Jouni
Paulus in Spring 2004. The algorithm and its parameter val-
ues have been untouched since then.

In [1], both causal and non-causal versions of the method
were described. The practical difference between the two
is that the causal version generates beat estimates based on
past samples, whereas the non-causal version does (Viterbi)
backtracking to find the globally optimal beat track after
hearing the entire excerpt. The backtracking improves accu-
racy especially during the beginning of an analysis signal.

Here we employed the causal version of the algorithm.
The non-causal version would be slightly more accurate es-
pecially for short analysis signals like those used in this con-
test, but also less realistic for on-line applications.

2. The meter analysis algorithm
The aim of the method proposed in [1] is to estimate the
meter of acoustic musical signals at three levels: at the tac-
tus, tatum, and measure-pulse levels. An overview of the
method is shown in Fig. 1.

For the time-frequency analysis part, a technique is em-
ployed which aims at measuring the degree of spectral change,
or, “accent” in music signals. In brief, preliminary time-
frequency analysis is conducted using a quite large number

1 Available at www.cs.tut.fi/sgn/arg/klap/sapmeter.pdf.
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Figure 1. Overview of the meter analysis method.

of subbands and by measuring the degree of spectral change
at these channels. Then, adjacent bands are combined to ar-
rive at four bandwise accent signals, for which periodicity
analysis is carried out.

Periodicity analysis of the bandwise accent signals is per-
formed using a bank of comb filter resonators very similar
to those used by Scheirer in [2]. Before we ended up us-
ing comb filters, four different period estimation algorithms
were evaluated. A bank of comb filter resonators was cho-
sen because it was the least complex among the three best-
performing algorithms.

The comb filters serve as feature extractors for two prob-
abilistic models. One model is used to estimate the period-
lengths of metrical pulses at different levels. The other model
is used to estimate the corresponding phases (see Fig. 1).
The probabilistic models encode prior musical knowledge
regarding well-formed musical meters. In brief, the models
take into account the dependencies between different pulse
levels (tatum, tactus, and measure) and, additionally, imple-
ment temporal tying between successive meter estimates.
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Abstract
Large music collections, ranging from thousands to mil-

lions of tracks, are unsuited to manual searching, motivat-
ing the development of automatic search methods. When
two musical groups perform the same underlying song or
piece, these are known as ‘cover’ versions. We describe a
system that attempts to identify such a relationship between
music audio recordings. To overcome variability in tempo,
we use beat-tracking to describe each piece with one feature
vector per beat. To deal with variation in instrumentation,
we use 12-dimensional chroma feature vectors that collect
spectral energy supporting each semitone of the octave. To
compare two recordings, we simply cross-correlate the en-
tire beat-by-chroma representation for two tracks and look
for sharp peaks indicating good local alignment between the
pieces. Evaluation on a small set of 15 pairs of pop music
cover versions identified within the USPOP2002 collection
achieves a performance of around 60% correct.

Keywords: Music Similarity, Cover Songs, Chroma Fea-
tures, Beat Tracking

1. Introduction
Immediate access to large music collections is now com-
monplace – be they the thousands of songs on the MP3
player in your pocket, or the millions of songs available at
online music stores. But finding music within such collec-
tions can be very problematic, leading to the current inter-
est in automatic music similarity estimation. In this paper,
we address a slightly different problem: rather than trying
to find music whose genre, style, or instrumentation match
particular query examples, we are trying to find versions of
the same piece of music, despite the fact that they may be
performed with very different styles, instrumentation, etc.
These alternate versions of the same underlying piece of
music are known as ‘cover versions’.

Cover versions will typically retain the essence of the
melody and the lyrics (for a song) but may vary greatly in
other dimensions. Indeed, in pop music, the main purpose of
recording a cover version is typically to investigate a more-
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or-less radically different interpretation of a song (although
in different recordings of classical music the variations may
be more subtle). Thus, to solve this problem, we must de-
vise representations and matching schemes that are robust
to changes in tempo, instrumentation, and general musical
style.

2. Overview
Our representation has two main features: We use a beat
tracker to generate a beat-synchronous representation with
one feature vector per beat. Thus, variations in tempo are
largely normalized as long as the same number of beats is
used in each phrase. The representation of each beat is a
normalized chroma vector, which sums up spectral energy
into twelve bins corresponding to the twelve distinct semi-
tones within an octave, but attempting to remove any dis-
tinction between different octaves. Chroma features cap-
ture both melodic information (since the melody note will
typically dominate the feature) and harmonic information
(since other notes in chords will result in secondary peaks
in a given vector).

To match two tracks represented by such beat-vs-chroma
matrices, we simply cross-correlate the entire pieces. Long
sequences of beats with similar tonal structure will result in
local maxima at the appropriate lags in the cross-correlation,
with the size of the peak increasing both with the degree of
similarity in the chroma features, and the length of match-
ing sequences. To distinguish between genuine matches
and incidental high cross-correlations, we emphasize rapid
variations in the cross-correlation (i.e. particular lags at
which alignment is high despite being low at neighboring
lags) through high-pass filtering. To accommodate transpo-
sition between versions (performances in different keys), we
cross-correlate between all twelve possible semitone trans-
positions of the chroma vectors.

3. Beat tracking
Our beat-tracker is based on the description of Jehan [5].
A log-magnitude 40-channel Mel-frequency spectrogram is
calculated for 8 kHz downsampled mono versions of the
original recording with a 32 ms window and 8 ms hop be-
tween frames. The first-order difference along time in each
frequency channel is half-wave rectified (to leave only on-
set information) then summed across frequency. This “on-
set envelope” is high-pass filtered with a 3 dB point at 0.01
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Figure 1. Autocorrelation of the first 90 s of a piece, used to choose the global target tempo. The Gaussian weighting window
is shown overlaid, and the chosen period (27 samples = 278 bpm) is shown by a vertical line.

rad/samp to remove d.c. offset, and the first 90 s of the piece
are autocorrelated out to a lag of 128 points (1.024 s). This
autocorrelation is windowed with a Gaussian in log-period
centered on 240 bpm, with a half-width of 1.5 octaves. Then
the shortest lag that is a local maximum with a value at least
0.4 times the largest maximum in the windowed autocorre-
lation is taken as the global target period. This favors the
multiple of the basic beat of the piece that is closest to 240
bpm i.e. closer to the tatum (shortest melody note duration)
than what would be the notated tempo of the piece. Figure
1 shows an example of the global autocorrelation

The onset envelope is then filtered by a periodicity en-
hancing smoothing window composed of cos8 at the global
target period, Hann-windowed out to ±3 periods. Beats
are then chosen as the local maxima of this enhanced on-
set function within each beat-length window centered one
beat on from the last marked beat. However, if no maxima
reaches 0.25 of the magnitude of the last-picked maxima,
the default predicted beat position is used instead, and the
search continues forward. This allows the tracker to con-
tinue through short stretches of weak or absent beat.

4. Chroma features
To the extent that the beat tracking can identify the same
main pulse in different renditions of the same piece, repre-
senting the audio against a time base defined by the detected
beats normalizes away variations in tempo. We choose to
record a single feature vector per beat, and use twelve ele-
ment ‘chroma’ features to capture both the dominant note
(typically melody) as well as the broad harmonic accom-
paniment [4, 1]. The idea of calculating harmonic features
over beat-length segments appears to have been developed
several times; we first became aware of it in [6].

Rather than using a coarse mapping of FFT bins to the
chroma classes they overlap (which is particularly blurry at
low frequencies), we use the phase-derivative within each
FFT bin both to identify strong tonal components in the
spectrum (indicated by spectrally-adjacent bins with close
instantaneous frequencies) and to get a higher-resolution es-
timate of the underlying frequency [2]. We found that us-
ing only components up to 1 kHz in our chroma features

worked best. Figure 2 shows an example of the chroma fea-
tures alongside the beat-tracked mel spectrum of the frag-
ment they describe.

5. Matching
From the processing so far, we have each recording repre-
sented by a matrix of 12 chroma dimensions by however
many beats are detected in the entire piece. We expect cover
versions to have long stretches (verses, choruses, etc.) that
match reasonably well, although we don’t particularly ex-
pect these to occur in exactly the same places, absolutely or
relatively, in the two versions. We initially experimented
with chopping one piece up into multiple fragments and
looking for the best cross-correlation of each fragment in the
test piece, but in addition to being very slow it was difficult
to choose the best length of fragment size. In the end, the
simpler approach of cross-correlating the entirety of the two
matrices gave us the best results. Although this is unable
to reward the situation when multiple fragments align but at
different relative alignments, it does have the nice property
of rewarding both a good correlation between the chroma
vectors and a long sequence of aligned beats, since the over-
all peak correlation is a product of both of these. Chroma
vectors are intrinsically non-negative; we scaled them to
have unit norm at each time slice. The cross-correlation is
further normalized by the length of the shorter segment, so
the correlation results are bounded to lie between zero and
one. We perform the cross-correlation twelve times, once
for each possible relative rotation (transposition) of the two
feature matrices.

We observed, however, a number of spurious large corre-
lations from relatively long stretches dominated by a single
chroma bin; this occurs in many tracks. We found that gen-
uine matches were indicated not only by absolutely large
cross-correlations but also by sharp local maxima in cross-
correlations that fell off rapidly as the relative alignment
changes from its best value. To emphasize these sharp local
maxima, we choose the transposition that gives the largest
peak correlation then high-pass filter that cross-correlation
function with a 3 dB point at 0.1 rad/sample. The ‘dis-
tance’ reported for the evaluation is simply the reciprocal
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Figure 2. Excerpt showing the Mel-scale spectrogram (top pane), the periodicity-enhanced onset envelope (middle pane, with
chosen beat instants indicated), and the unnormalized per-beat chroma feature vectors (bottom pane).

of the peak value of this high-pass filtered cross-correlation;
matching tracks typically score below 20, whereas unrelated
tracks are usually above 50.

Matching will fail if the feature extraction is based on
beats with different relations to the music i.e. if one version
tracks twice as many beats per song phrase. To accommo-
date this, we experimented with including two representa-
tions of each track, the original plus one using double the
beat length (i.e. around 120 bpm) but this did not offer any
advantage in our experiments.

6. Evaluation
We developed the system on set of 15 pairs of pop-music
tracks that were alternate versions of the same song. They
were extracted from the USPOP2002 dataset [3] by making
a list of all tracks from the total set of 8764 tracks that had
the same name, then listening to each pair to see if they were
in fact the same piece; about 20% were. We stopped after
we had found 15 pairs. Interestingly, it was often hard to tell
if two tracks were the same until the verse began, at which
point the lyrics quickly indicated matching tracks.

We made two lists of tracks, each containing one of the
two versions of each track. In the evaluation, each track in
the A list was compared to every track in the B list, and
called a cover version of the track that it was most similar
to; thus, the task was to identify the cover version know-
ing that one exists, rather than deciding if two songs were

similar enough to be considered covers. Our best system
(over variations in parameters such as filter breakpoints for
the chroma features and matching) correctly identified 10
of 15 tracks; typical performance varied between 6 and 9
correct (where guessing would give one). Four of the pairs
were clearly difficult for our representation and were almost
never correctly identified. The test set is detailed in table 1.

7. Conclusions

Identifying cover tracks is an interesting new direction for
content-based search of music audio databases. However,
it is much more computationally expensive than the time-
insensitive feature-distribution models typically used in genre
and artist classification: our initial experiments took up to
30 s to compare each pair of tracks, making search in large
databases completely intractible; we managed to speed this
up by a factor of 100, but this still limits the size of database
that we can afford to search by such direct means.

Our plan is to use these techniques to identify a dictio-
nary of smaller fragments that can provide the most efficient
coverage of large music databases. These can then be used
as (possibly redundant) ‘index terms’ to permit the use of
more rapid indexing schemes, as well as potentially reveal-
ing interesting repeated motifs and shared structure within
music collections.
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Table 1. Cover version test set from uspop2002, along with typical system performance.
Title “A” artist “B” artist comments

Abracadabra Steve Miller Band Sugar Ray easy
Addicted to Love Robert Palmer Tina Turner hard

All Along the Watchtower Dave Matthews Band Jimi Hendrix hard
America Paul Simon (live) Simon and Garfunkel

Before You Accuse Me Creedence Clearwater Revival Eric Clapton
Blue Collar Man REO Speedwagon Styx easy

Caroline No Beach Boys Brian Wilson (live) easy
Cecilia Paul Simon (live) Simon and Garfunkel very hard

Claudette Everly Brothers Roy Orbison easy
Cocaine Eric Clapton Nazareth

Come Together Aerosmith Beatles easy
Day Tripper Beatles Cheap Trick easy

Faith George Michael Limp Bizkit
God Only Knows Beach Boys Brian Wilson (live) hard
Gold Dust Woman Fleetwood Mac Sheryl Crow easy

Acknowledgments
This work was supported by the Columbia Academic Qual-
ity Fund, and by the National Science Foundation (NSF)
under Grant No. IIS-0238301. Any opinions, findings and
conclusions or recommendations expressed in this material
are those of the author and do not necessarily reflect the
views of the NSF.

References

[1] M. A. Bartsch and G. H. Wakefield. To catch a chorus: Us-
ing chroma-based representations for audio thumbnailing. In
Proc. IEEE Workshop on Applications of Signal Processing
to Audio and Acoustics, Mohonk, New York, October 2001.

[2] F. J. Charpentier. Pitch detection using the short-term phase
spectrum. In Proc. ICASSP-86, pages 113–116, Tokyo,
1986.

[3] D. Ellis, A. Berenzweig, and B. Whitman. The
“uspop2002” pop music data set, 2003. http:
//labrosa.ee.columbia.edu/projects/
musicsim/uspop2002.html.

[4] T. Fujishima. Realtime chord recognition of musical sound:
A system using common lisp music. In Proc. ICMC, pages
464–467, Beijing, 1999.

[5] T. Jehan. Creating Music by Listening. PhD thesis, MIT
Media Lab, Cambridge, MA, 2005.

[6] N. C. Maddage, C. Xu, M. S. Kankanhalli, and X. Shao.
Content-based music structure analysis with applications to
music semantics understanding. In Proc. ACM MultiMedia,
pages 112–119, New York NY, 2004.

Music Information Retrieval Evaluation eXchange - MIREX 2006

35



Identifying Cover Songs from Audio Using Harmonic Representation

Kyogu Lee
Center for Computer Research in Music and Acoustics

Department of Music, Stanford University
kglee@ccrma.stanford.edu

Abstract
This extended abstract describes in detail a submission to
the task on Audio Cover Song in the Music Information Re-
trieval eXchange in 2006. The system uses as feature set a
chord sequence identified by an HMM trained with audio-
from-symbolic data, and computes a distance between two
chord sequence pair using the Dynamic Time Warping al-
gorithm to find the minimum alignment cost. The rational
behind the system is that cover songs largely preserve har-
monic content even if they vary in other musical attributes
such as instrumentation, tempo, key, and/or melody.

Keywords: MIREX, Cover Song, Chord Sequence, Dynamic
Time Warping

1. Introduction
A cover song is defined as a song performed by an artist
different from the original artist1 . Identifying cover songs
given an original as a seed/query or finding the original given
a cover version from the raw audio is a challenging task, and
it has recently drawn attention in a Music Information Re-
trieval society. Cover songs are different from its original in
terms of many musical attributes such as duration, tempo,
dynamics, instrumentation, timbre, or even genre. There-
fore, the raw audio in the time-domain or its frequency-
domain representation like spectrogram is very different from
each other. Such diversity found in cover songs requires a
robust feature set that remains largely unchanged under var-
ious musical changes mentioned above.

Harmonic progression is a robust mid-level representa-
tion that is largely preserved under such musical variations.
While other musical details such as melody, tempo, and/or
timbre may vary from one to another, their harmonic pro-
gression over time undergoes minor changes compared with
the others.

2. System Overview
Our system consists of two main blocks – (1) feature set is
first extracted from the raw audio, and (2) distance measures

1 http://www.secondhandsongs.com/wiki/Guidelines/Cover

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
c© 2006 University of Victoria

Chord

Song 2

DTW

Chord

Feature
extraction

Feature
extraction

12−bin chromagram12−bin chromagram

recognition recognition

Chord sequenceChord sequence

Distance measure

Song 1

Figure 1. System overview

are computed between a song pair based on the extracted
featureset. Figure1 illustrates theoverview of thesystem.

2.1. Chord recognition

Automatic chord recognition algorithm is decomposed of
two parts. The first part computes a quantized 12-bin chro-
magram from the raw audio [1]. After a chromagram is ob-
tained, automatic chord recognition algorithm based on the
HMM isapplied to get thechord sequence[2, 3], which has
just onevalueper frame. Figure2 showstheoverview of the
automatic chord recognition system.

Transposition from onekey to another isnot rarein cover
songs, and it may causeaseriousproblem in computing the
distancebecausechord-to-chorddistancebecomeslarger even
thoughrelativechordprogressionbetweenthetwosequences
might be alike. To avoid this problem, key identification
must precede. Instead of designingasophisticated key iden-
tification algorithm, we simply estimated the key of a song
to be the most frequent chord in the chord sequence, and
transposed every song to a C major key beforesending it to
a distance computing algorithm (algo1). As an alternative,
we also used thefirst chord to be thekey (algo2).

2.2. Distance computing
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After frame-level chord sequence is obtained for each song,
we used the dynamic time warping algorithm (DTW) to find
the minimum alignment cost between the two songs. DTW
algorithm has been successfully used in the automatic speech
recognition system to identify a word by finding the minimum-
cost path between the input word and the word templates.

In order to use the DTW algorithm, we first need to ob-
tain two-dimensional cost matrix from the two inputs. We
defined a cost of being in aligned states by computing the
chord-to-chorddistance from the HMM parameters obtained
above. In addition, we also defined a transition cost from
the transition probability matrix in the HMM. Therefore, a
combined cost at time stepk for inputak andbk is given by

d(ak, bk) = dS(ak, bk) + dT (ak, bk|ak−1, bk−1), (1)

wheredS is a cost of being in aligned states, anddT is a
transition cost from the previous states to the current states.
The total cost of alignment between the two sequencesa and
b is then given by

D(a, b) =

K∑

k=1

d(ak, bk). (2)

Figure3 displays the examples of the DTW for a cover-
pair (on the left) and for a non-cover pair (on the right).

3. Results and analysis
3.1. Test material
Test data was composed of 30 queries with each query hav-
ing 11 different cover versions including themselves. There-
fore, total collection contains 30x11 = 330 songs. The col-
lection includes a wide range of music from classical to hard
rock.

3.2. Evaluation
Eight algorithms including the two by the author were sub-
mitted to the MIREX task on cover song identification. Four
measures were used to evaluate the performance of the algo-
rithms – (1) total number of cover songs identified; (2) mean
number of cover songs identified; (3) mean of maxima; and
(4) Mean reciprocal rank (MRR) of first correctly identified
cover. Table1 shows the results using these measures.

As shown in Table1, two algorithms described in this pa-
per are ranked at 2nd and 3rd places, respectively, using all
four measures. Raw results reveal that some songs are diffi-
cult to identify for all systems while other songs are system-
specific. In addition, the top four algorithms were specif-
ically designed only for cover song identification whereas
the bottom four were originally used in the similarity find-
ing task as well. This proves that the two tasks are quite
different from each other.

4. Conclusions
We proposed a system that identifies the cover songs from
the raw audio using harmonic representation as a feature set
and the dynamic time warping algorithm to score an align-
ment between the two songs abstracted through chord se-
quences. The rationale behind this idea was harmonic con-
tent would remain largely intact under various acoustical
changes found in different versions of cover songs.

To this end, we first extracted a chord sequence from the
chromagram at the frame rate using the HMM, and anchored
the whole sequence to the most frequent chord or to the first
chord to avoid the problem of transposition of keys. We
then used the dynamic time warping algorithm to find the
minimum alignment cost between a pair of chord sequences.
In computing the total cost, we not only used a cost of be-
ing in aligned states but also a transition cost from chord to
chord to reflect the theory of harmonic progression in West-
ern tonal music.

Although we used our system only to recognize the cover
songs, we believe it can be also used to find musical similar-
ity since cover songs are extreme examples of similar music.
Therefore, even if some songs which appear high in the list
are not relevant, they might be evaluated similar to the query
by human subjects, especially harmonic content is a key cri-
terion in evaluating musical similarity.
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Figure 3. Examples of dynamic time warping.

Table 1. Summary results of eight algorithms.
Measure Total number of Mean number of Mean of maxima MRR of first correctly

covers identified covers identified identified cover

1 D.P.W. Ellis (761) D.P.W. Ellis (2.31) D.P.W. Ellis (4.53) D.P.W. Ellis (0.49)
2 K. Lee [1] (365) K. Lee [1] (1.11) K. Lee [1] (2.50) K. Lee [1] (0.22)
3 K. Lee [2] (314) K. Lee [2] (0.95) K. Lee [2] (2.27) K. Lee [2] (0.22)
4 Sailer & Dressler Sailer & Dressler Sailer & Dressler Sailer & Dressler

(211) (0.64) (2.13) (0.21)
5 Lidy & Rauber Lidy & Rauber Lidy & Rauber Lidy & Rauber

(149) (0.45) (1.57) (0.12)
6 K. West [1] (117) K. West [1] (0.35) T. Pohle (1.50) K. West [1] (0.10)
7 T. Pohle (116) T. Pohle (0.35) K. West [1] (1.30) K. West [1] (0.10)
8 K. West [2] (102) K. West [2] (0.31) K. West [2] (1.23) T. Pohle (0.09)

In the future, we plan to include a melodic description
in the feature set, which is another robust musical attribute
that doesn’t change much from cover to cover. In addition,
we believe that applying the DTW to the most representa-
tive part of music will help not only increase the identifica-
tion performance but also decrease the computation time to
a great degree.
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Abstract
This paper describes the submission to the MIREX 06 (Mu-
sic Information Retrieval EXchange) Audio Cover Song task
delivered by Fraunhofer IDMT. A method to detect cover
songs by comparing the most salient melodies of musical
pieces is proposed, based on the assumption that cover ver-
sions of one song contain the same melody. To this end,
the predominant melody of the musical pieces to be con-
sidered is extracted and characteristic parts are sought for.
The melodic similarity between the pieces is calculated and
derived from these values, a distance matrix is constructed.

Keywords: MIREX, Audio Cover Song, melodic similarity,
melody extraction, melody alignment

1. Introduction

The basic idea behind this approach is that a cover song is
by definition a new rendition of a previously recorded song.
As it is a version of the same song, it should carry the same
melody as one of the conceptual features inherent to the mu-
sical entitiy of song. Considering this, it is even more prob-
able that the covered song has the same melody (or some
variation of it) as the original version, than having a similar
sound or instrumentation. This may easily be seen by com-
paring e.g. Tori Amos’ version of Nirvana’s ”Smells Like
Teen Spirit” to the original.

Thus, a method to find cover versions by comparing the
salient melodies of musical pieces is proposed.

2. Implementation Overview

The algorithm is implemented in C++ and is available for
Linux and Windows platforms. It consists of two parts, an
indexing program (a) and the actual retrieval tool (b).

(a) extracts the melody (predominant voices) from audio
files, processes them to relevant pieces and stores them in
a data base. The algorithm works sample rate agnostic and
reads wav, aiff and mp3 files. The run time is linear with the
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duration of audio input and is about 10-12 times faster than
real time1 .

(b) reads the data base generated by (a) and calculates
the distance matrix as is described in the requirements for
the Audio Musical Similarity, respectively the Audio Cover
Song task on the MIREX 2006 site2 . As this is a quadratic
matrix where each piece is compared to each other, the run-
time forN pieces isO(N2).

3. Indexing
3.1. Pitch Detection

The first step of the melody extraction is using a multi reso-
lution FFT and the algorithm proposed by Dressler in [1, 2].
It yields a voiced/non voiced detection in conjunction with
a pitch line (pitch in cent over time) for the voiced parts.

3.2. Melody Quantization

In a process derived from the melody segmentation works of
Heinz [3], note boundaries are estimated from the pitch line
and further spectral information. The resulting note candi-
dates are then subjected to a plausibility test where objects
of too short duration or insufficient loudness are discarded.
Finally, a discrete pitch is estimated for each note candidate,
providing melody information on a note basis.

3.3. Relevance Weighting

There are several reasons why storing the melody over the
entire length of the song is not desirable. To begin with, a
lot of processing time is used for the data base search if both
the query and the reference are very large. Furthermore, it is
more probable to receive relevant results by matching sev-
eral short excerpts of one piece against another melody in-
stead of matching entire melodies, as structural differences
within a musical piece or between versions may lead to con-
fusing results when comparing whole melodies.

For these reasons, the extracted melodies are split into
relevant pieces. In order to find such pieces, parts of the ex-
tracted melody are sought that fulfil the requirements to be
a musical theme: They must be between 3 and 8 seconds
long, and consist of neither too few nor too many notes [4].
Following the idea that at least in western popular music,

1 All runtimes are measured on a 3GHz Intel Pentium IV
2 See http://www.musicir.org/mirex2006
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important themes (like verse, chorus, etc.) are usually re-
peated, these theme candidates are looked up within the
same piece of music and weighted according to their num-
ber of appearances within the piece.

4. Evaluation
To evaluate the indexed data, up to three excerpts of the
melody are matched against all entries in the data base of
indexed data, using a melody alignment algorithm that has
been developed for a Query by Humming system [5].

4.1. Melody Alignment

The look-up is carried out as a string alignment process
(see [6] for a general explanation), which has been adapted
for melody search [7]. As basic search alphabet, the relative
change of a melody over time is used. Thus, not notes but
descriptions of note transitions represented by note intervals
and the ratio of inter-onset intervals are considered. This
frees the search algorithm from a dependency on absolute
tempo and pitch – attributes that may vary between different
versions of a piece of music.

The alignment is carried out as a semi-local alignment,
meaning that the whole query string must match any part of
the reference string. It returns a value which is the higher,
the better the query matches to the reference.

In a post processing step, the contours of the matching
part of the reference are matched to the contour of the query,
and a correction of the alignment value is carried out.

As the resulting alignment values depend on the size of
the query string (the longer the string, the greater the max-
imum possible value), the values are finally normalized to
the range of[0..1].

4.2. Distance Matrix

The melody alignment yields a melodic similarity measure
sab between two melodiesa andb ranging from 0 (no sim-
ilarity at all) and 1 (equality). To get the distancedab as it
is required by the Audio Cover Song task, all similarities
wheresab = 0 are set tosab = 10−7, and then the distance
is calculated asdab = 1

sab
− 1, thus being a non-negative

number between0 and107.

5. Results and Discussion
An overview of the results3 of the Audio Cover Song eval-
uation can be found in table 5. The test bed consists of a
set of about 5000 songs, embedded into which are 30 songs
along with 10 cover versions of each of these song.

Each of these 330 versions is used as query and the ten
most similar songs returned are evaluated

As can easily be seen, the submitted algorithm yields a
higher success rate on dectecting cover versions than the

3 Please see http://www.music-ir.org/mirex2006/index.php/MIREX2006Results
for full results and further information on contestants

Table 1. Overview of the results of the Audio Cover Song task,
this submission in bold. Entries marked with ∗ are musical
similarity algorithms. The first result line shows total cover
versions found out of 3300 possible, the second line shows in-
verse average rank of best cover version

CS DE KL1 KL2 KWL∗ KWT∗ LR∗ TP∗

211 761 365 314 117 102 149 116
0.21 0.49 0.22 0.22 0.10 0.10 0.12 0.09

musical similarity algorithms evaluated for this task. Con-
sidering the fact that cover versions do not necessarily have
the same sound, and often are intentionally rearranged, this
may not be a big surprise. On the other hand, it yielded
lower success rates than algorithms that have been carefully
crafted to detect cover versions based on an extensive struc-
tural and musical analysis of the audio tracks.

Several problems could be identified for this algorithm:
Considering just one feature, in this case melody, makes the
algorithm vulnerable to extraction errors as well as to cases
where melody is not the key feature of a song or has been al-
tered in the cover version. Additionally, the melody extrac-
tion, though state of the art, is far from being perfect. The
note segmentation required for the qbh algorithms to work
is highly dependent on the quality of pitch extraction and
furthermore adds its own errors. Finally, the segmentation
of the melody in theme like pieces is based solely on the
melody information previously extracted in this approach,
which leads to spurious results in some cases. Recapitulat-
ing, it becomes obvious that error propagation from the first
steps, promoted by a strong dependency on exact inputs by
later stages, diminishes the overall performance of the sys-
tem.

6. Conclusive Remarks
With this submission, it could be shown that melody is an
important feature for detecting cover versions, and that au-
tomatically extracted melodies can be a handy tool for this
task. However, it also became clear that automatically ex-
tracted melodies alone are not sufficient to conduct this task
satisfactorily. Besides optimising the melody extraction and
segmentation, an interesting prospect will be the integration
of such a melody similarity assessment into a larger, multi
feature system, using melody as one feature as well as us-
ing a song segmentation for detecting the relevant musical
pieces.
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Abstract
The MIREX (Music Information Retrieval Evaluation eX-
change) framework provides a common set of data to eval-
uate and compare a vast variety of MIR systems. This pa-
per describes our submission to the audio melody extrac-
tion evaluation addressing the task of identifying the melody
pitch contour from polyphonic musical audio. It shall give
an overview about the used methods and a discussion of the
evaluation results. The presented algorithm is a derivative
of our submission to MIREX’05. Therefor we will outline
changes between the two versions and discuss the impact of
the further developments.

The MIREX 2006 evaluation results show that our algo-
rithm performs best in pitch detection and melody extrac-
tion.

Keywords: MIREX 2006, audio melody extraction.

1. METHOD
1.1. Spectral Analysis
A multi resolution spectrogram representation is obtained
from the audio signal by calculating the Short-Term Fourier
Transform (STFT) with different factors of zero padding us-
ing a Hann window. Thereby we make use of a Multi Res-
olution FFT – an efficient technique used to compute STFT
spectra in different time-frequency resolutions [1]. For all
spectral resolutions – assuming audio data sampled at 44.1
kHz – the resulting STFT frame size and the hop size of the
analysis window are 2048 and 256 samples, respectively.
This processing step is followed by the computation of the
magnitude and phase spectra.

To gain a better frequency discrimination, the instanta-
neous frequency (IF) is estimated from successive phase spec-
tra. We apply the well-known phase vocoder method pro-
posed by [2] for the IF extraction.

1.2. Peak Selection
Sinusoidal components of the audio signal contain the most
relevant information about the melody. Yet, it is a challenge

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
c© 2006 University of Victoria

to reliably identify sinusoidal partials in polyphonic music.
Of course a consistent and moderate change in magnitude
and frequency of the examined spectral peaks is a good cri-
terium for the identification of sinusoidals. However, this
requires a continuous tracking of partials with time, a de-
mand which cannot be implemented easily for polyphonic
audio signals.

Charpentier found that you can identify sinusoidals by
distinct spectral features in one FFT frame alone [3]. We
developed his method further and this way improved the per-
formance and robustness of the adjacent pitch estimation no-
ticeably. Nevertheless this efficient method is not adequate
for audio signals with a dense spectrum, because it relies on
a non distorted phase spectrum around spectral peaks. This
is not the case for closely adjoining partials, which will be
erroneously identified as noise and will be discarded from
further analysis. For this reason we employed a psychoa-
coustic model in this year’s application in contrast to the
local sinusoidality criterion we applied in our submission to
MIREX’05 [4].

Unlike the before-mentioned sinusoidality criterion, psy-
choacoustic masking is a method to exclude non audible
peaks - sinusoidal or not - from further processing. We use
a very simplified implementation of simultaneous and tem-
porary masking, which by far does not reach the complexity
of models used in modern lossy audio coders. However, this
way many unprofitable peaks can be erased from the spec-
trum in order to speed up the further processing.

1.3. Pitch Estimation
The magnitude and instantaneous frequency of the sinusoids
are evaluated by a pitch estimation method, as the frequency
of the strongest harmonic may not be the perceived pitch of a
periodic complex tone. At first, the pitch estimator performs
a magnitude weighting and then it analyzes the harmonic
structure of the polyphonic signal. The algorithm covers
four octaves – computing pitch frequencies and an approx-
imate prediction of the pitch salience in a frequency range
between 80 Hz and 1280 Hz. A variable number of pitch
candidates at each frame (about five pitches on average) is
used to track tone objects.

1.4. Auditory Streaming
At the same time the frame-wise estimated pitch candidates
are processed to build acoustic streams. Tones which have
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a sufficient magnitude and are located in an adequate fre-
quency range are assigned to the corresponding streams.
Anyhow, every stream may possess only one active tone at
any time. So in competitive situations the active tone is cho-
sen with the help of a rating method that evaluates the tone
magnitude and the frequency difference between the pitch
of the tone and the actual stream position. Conversely, a
tone is exclusively linked to only one stream.

This is a new concept compared to the method we used
in last year. There, all tone objects lasting longer than 100
ms were grouped according to their frequency range and
stored in different registers. Then all tone objects belong-
ing the most energetic frequency range gained an additional
weight in the concluding comparison. Yet, essentially any
tone from any frequency region – even outside the most en-
ergetic frequency range – could win the final comparison
and become part of the melody.

This is not the case in this year’s algorithm where only
tones from the most salient stream are considered to be mel-
ody tones. Therefor, the correct identification of the melody
stream is very important for the success of the method!

1.5. Identification of the Melody Stream
Finally, the melody stream must be chosen. In general the
most salient stream is identified as the melody. Of course
it may happen that two ore more streams have about the
same magnitude and thus no clear decision can be taken.
In this case, the stream magnitudes are weighted according
to their frequency. Streams from the bass region receive a
lower weight than streams from the mid and high frequency
regions. If no clear melody stream emerges during a short
time span, the most salient weighted stream is chosen.

2. Implementation
The algorithm is implemented in C++ and is available for
Windows and Linux platforms. The performance of the al-
gorithm varies slightly depending on the complexity of the
audio input. The reported execution time for the MIREX
2006 test sets, which consist of 45 audio pieces with an
overall length of 1053 seconds, is 75 seconds. Thus the au-
dio analysis is approximately 14 times faster than real-time
on an AMD Athlon XP 2600+1.9GHz CPU system with 2
GB RAM – the fastest runtime among all submissions. The
implementation is suitable for the instant processing of an
audio stream, although with a latency of 250ms up to 4s
this implementation is not suitable for real-time processing.
However, the allowed latency may be decreased to a mini-
mum value of about 25ms. Of course such a small latency
will noticeably decrease the overall accuracy of the algo-
rithm.

3. MIREX Evaluation
3.1. Evaluation Overview

The aim of the MIREX Audio Melody Evaluation is to ex-
tract melodic content from polyphonic audio. Two datasets
were available for the evaluation this year. The MIREX
2005 dataset contains 25 phrase excerpts of 10-40 seconds
length from the following genres: Rock, R&B, Pop, Jazz,
Solo classical piano. The same data was used for the MIREX
2005 audio melody contest. This way a direct comparison
between the evaluation 2005 and this year’s evaluation is
possible. For the ISMIR 2004 Audio Description Contest,
the Music Technology Group of the Pompeu Fabra Univer-
sity assembled a diverse set of 20 polyphonic musical audio
pieces and corresponding melody transcriptions including
MIDI, Jazz, Pop and Opera music as well as audio pieces
with a synthesized voice. Each file has an approximate du-
ration of 20 seconds 1 .

The audio excerpts are provided as single channel PCM
data in CD-quality (16-bit resolution, 44.1 kHz sample rate).
The corresponding reference annotations of the predomi-
nant melody include a succession of pitch frequency esti-
mates at discrete time instants (5.8/10 ms grid). Zero fre-
quencies indicate periods without melody. The estimated
frequency was considered correct whenever the correspond-
ing ground truth frequency is within a range of 50 cents.

To maximise the number of possible submissions the tran-
scription problem was divided into two subtasks, namely the
melody pitch estimation and the distinction of melody and
non-melody parts (voiced/unvoiced detection). It was possi-
ble to give a pitch estimate even for those parts, which have
been declared unvoiced. Those frequencies are marked with
a negative sign. Moreover, each dataset was divided into a
vocal and a non-vocal melody voice subset.

3.2. Results
The evaluation results show that our algorithm performs best
in pitch detection and melody extraction 2 . As indicated
by the excellent runtime of our algorithm, the implemented
methods allow a very efficient computation of the melody
pitch contour.

Table 1 shows that the overall accuracy varies signifi-
cantly among the submissions. However, we must not forget
that quite different approaches are compared. In contrast to
the other transcription systems, Poliner and Ellis present a
classification-based system that uses no assumptions about
the physical nature of sound [5]. Brossier aims at real-time
processing with a very short latency [6]. Sutton et al have
built a system that is only suitable for singing voice extrac-
tion [7]. So naturally their system performs better for the
vocal pieces. Ryynänen and Klapuri use a general approach
with a parameter setting especially tuned for the transcrip-
tion of the singing voice [8]. For the given vocal examples,

1 The data set including the reference annotations can be found on the
contest web page http://ismir2004.ismir.net/melody contest/results.html

2 Detailed evaluation results can be found at http://www.music-
ir.org/mirex2006/index.php/Audio Melody Extraction Results
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Table 1. 2006 MIREX Audio Melody Extraction Results
Dataset Participant Voicing

Recall
Voicing
False Alm

Voicing d-
prime

Raw
Pitch

Raw
Chroma

Overall
Accuracy

Runtime
(s)

ISMIR 2004 Dressler 90.9% 10.5% 2.58 82.9% 84.0% 82.5% 27

Ryynänen & Klapuri 84.4% 12.6% 2.16 80.6% 82.3% 77.3% 440

Poliner & Ellis 89.9% 36.3% 1.63 73.2% 76.4% 71.9% -

Sutton et al 73.2% 24.9% 1.30 62.6% 65.4% 58.2% 5014

Brossier 99.7% 88.4% 1.61 57.4% 68.7% 49.6% * 30

MIREX 2005 Dressler 89.3% 28.8% 1.80 77.7% 82.0% 73.2% 48

Dressler (2005) 81.8% 17.3% 1.85 68.1% 71.4% 71.4% 32

Ryynänen & Klapuri 78.2% 16.5% 1.75 71.5% 75.0% 67.9% 773

Poliner & Ellis 93.5% 45.1% 1.64 66.2% 70.4% 63.0% -

Sutton et al 64.5% 13.8% 1.46 56.4% 60.1% 53.7% 8195

Brossier 99.5% 98.2% 0.46 41.0% 56.1% 31.9% * 58

Note: * Brossier did not perform voiced/unvoiced detection, so the overall accuracy cannot be meaningfully compared to other
systems.

no significant difference can be noted between the accuracy
of this implementation and our submission.

All resubmitted algorithms have improved the overall ac-
curacy compared to the results of MIREX’05. As we can
see in table 1 (where the submission of last year is marked
by italic font), our melody extraction algorithm has gained
1.8% in overall accuracy for the MIREX 2005 dataset. The
improvements for the raw pitch and raw chroma estimation
seem even more pronounced. Yet, a part of this increased
accuracy has to be attributed to the use of the negative fre-
quency output, which has not been used last year.
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Abstract
We introduce a method for the MIREX 2006 “Audio Melody

Extraction” task in which the goal is to estimate fundamen-

tal frequency (F0) trajectory of the main melody within poly-

phonic music. The introduced method is based on multiple-

F0 estimation followed by acoustic and musicological mod-

eling. The acoustic model consists of separate models for

melody notes and for no-melody segments. The musicologi-

cal model uses key estimation and note bigrams to determine

the transition probabilities between notes. Viterbi decoding

produces a sequence of notes and rests as a transcription

of the melody. The method details are published in ISMIR

2006 proceedings. As an extension to this method, we use a

simple F0 estimate selection to produce the required F0 tra-

jectory for the task evaluation. Although the method was de-

veloped for the automatic transcription of singing melodies

in polyphonic music, it is also applicable in general melody

transcription tasks.

1. Introduction

Singing melody transcription refers to the automatic extrac-

tion of a parametric representation (e.g., a MIDI file) of the

singing performance within a polyphonic music excerpt. A

melody is an organized sequence of consecutive notes and

rests, where a note has a single pitch (a note name), a begin-

ning (onset) time, and an ending (offset) time.

Recently, melody transcription has become an active re-

search topic. The conventional approach is to estimate the

F0 trajectory of the melody within polyphonic music, such

as in [1], [2], [3], [4]. Another class of transcribers pro-

duce discrete notes as a representation of the melody [5],

[6]. The introduced method belongs to the latter category,

and it is published in [7]. Here the method is, however, ex-

tended with a post-processing step of F0 selection so that

the required output format is produced for the MIREX eval-

uation.

Figure 1 shows a block diagram of the proposed method.

First, an audio signal is frame-wise processed with two fea-

ture extractors, including a multiple-F0 estimator and an ac-

cent estimator. The acoustic modeling uses these features

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page.

c© 2006 University of Victoria
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Figure 1. The block diagram of the transcription method.

The blue section indicates an extension to the method for the

MIREX style output. The green sections indicate the main

changes to the system compared to our MIREX 2005 method.

to derive a hidden Markov model (HMM) for note events

and a Gaussian mixture model (GMM) for singing rest seg-

ments. The musicological model uses the F0s to determine

the note range of the melody, to estimate the musical key,

and to choose between-note transition probabilities. A stan-

dard Viterbi decoding finds the optimal path through the

models, thus producing the transcribed sequence of notes

and rests. The decoding simultaneously resolves the note

onsets, the note offsets, and the note pitch labels. The pro-

posed method resembles our polyphonic music transcription

method [8] and our MIREX 2005 method but now it has

been tailored for singing melody transcription and includes

improvements, such as an acoustic model for rest segments

in singing and singing note range selection. These are indi-

cated in green in Fig. 1.

As an extension to the system, we use a simple selection

of F0s in the vicinity of each transcribed note to produce the

required output. This is indicated with the blue section in

Fig. 1.

2. Method Description

We briefly introduce the method in the following. For more

details, please see [7].

2.1. Feature Extraction
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The front-end of the method consists of two frame-wise fea-

ture extractors: a multiple-F0 estimator and an accent esti-

mator. We use the multiple-F0 estimator proposed in [9] in

a fashion similar to [8]. The estimator applies an auditory

model where an input signal is passed through a 70-channel

bandpass filterbank and the subband signals are compressed,

half-wave rectified, and lowpass filtered. STFTs are com-

puted within the bands and the magnitude spectra are summed

across channels to obtain a summary spectrum for subse-

quent processing. Periodicity analysis is then carried out by

simulating a bank of comb filters in the frequency domain.

F0s are estimated one at a time, the found sounds are can-

celed from the mixture, and the estimation is repeated for

the residual.

There was room for improvement in the note-onset tran-

scription of [8], and the task is even more challenging for

singing voice. Therefore, we add the accent signal feature

which has been successfully used in singing transcription

[10]. We apply the accent estimation method proposed in

[11].

2.2. Acoustic and Musicological Modeling

Our method uses two different abstraction levels to model

melodies: low-level acoustic modeling and high-level mu-

sicological modeling. The acoustic modeling aims at cap-

turing the acoustic content of singing whereas the musico-

logical model employs information about typical melodic

intervals.

2.2.1. Acoustic Models

Note events are modeled with a 3-state left-to-right HMM.

The model allocates one note HMM for each MIDI note in

the estimated note range (see Fig. 2). We use a GMM for

modeling the time segments where no singing-melody notes

are sounding, that is, rests. For training the note and rest

models, we use the RWC (Real World Computing) Popular

Music Database which consists of 100 acoustic recordings

of typical pop songs with annotated melodies [12].

2.2.2. Musicological Modeling

The note range estimation aims at constraining the possible

pitch range of the transcribed notes. Since singing melodies

usually lie within narrow note ranges, the selection makes

the system more robust against spurious too-high notes and

the interference of prominent bass line notes. This also re-

duces the computational load due to the smaller amount of

note models that need to be evaluated. The note range is

determined from the estimated F0s.

The musicological model controls transitions between the

note models and the rest model in a manner similar to that

used in [8]. The musicological model first finds the most

probable relative-key pair using a musical key estimation

method [10]. The relative-key pair is then used to choose the

note bigram probabilities estimated from a large database of

monophonic melodies.

MUSICOLOGICAL MODEL

NOTE MODEL

TIME

M
ID

I 
N

O
T

E
S

REST MODEL

Figure 2. The network of note models and the rest model.

2.2.3. Finding the Optimal Path

The note event models and the rest model form a network of

models where the note and rest transitions are controlled by

the musicological model. This is illustrated in Figure 2. We

use the Viterbi algorithm to find the optimal path through

the network to produce a sequence of notes and rests, i.e.,

the transcribed melody. Notice that this simultaneously pro-

duces the note pitch labels, the note onsets, and the note

offsets.

2.3. Determining the F0 Trajectory for MIREX 2006

The remaining task is to determine F0s in every frame of a

10 ms grid. This is done based on the note-level transcrip-

tion. Since we have the transcribed MIDI notes, we simply

select the frame-wise F0s which were associated to the note

during the transcription. If the absolute difference between

the note model and an associated F0 is more than two semi-

tones, we use the center frequency of the MIDI note instead.

Then we use linear interpolation to output the F0s at every

10 ms. For the rest segments, we output the most prominent

F0 estimates which lie on the estimated note range as the un-

voiced F0 estimates (i.e., negative F0 values in the output),

or zero if no such value is found.

Transcribed notes may end slightly too early due to sa-

lience decrease typical during note endings. If some un-

voiced F0s immediately continue the F0 trajectory of the

transcribed note, those unvoiced F0s are converted into voiced

estimates. By starting from the end of a note, unvoiced F0

estimates are frame-by-frame converted to voiced if the ab-

solute difference between consecutive estimates is less than

0.5

Figure 3 shows the method output for an excerpt in MIREX

2004 dataset. The green circles indicate the annotated F0s

(in MIDI note numbers). The grey boxes shows the tran-

scribed sequence of notes and rests. The actual output of

the method is the voiced F0 estimates (the blue dots). In

addition, the unvoiced F0 estimates (negative F0 values in
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Figure 3. The method output for pop2.wav in MIREX 2004

dataset. See text for details.

the output file) are shown in red. The last note shows an

example of note extension where some unvoiced F0s have

been changed to voiced since they naturally continue the F0

trajectory of the note.

3. About the Implementation

The method has been implemented as Matlab M-files and

MEX-files, and it should run in Linux Matlab versions 6.5

and 7.2. The execution time on a 1.7 GHz Linux PC is about

twice the real-time without any particular optimizations.

4. Evaluation Results

The method performed second best in the evaluations. Since

the method was developed for singing transcription, it per-

formed better for vocal melodies than non-vocal melodies.

Table 1 compares the performance of our methods in 2005

and 2006 for the “MIREX 2005 Dataset - All”. The new

method works better than the old one with these criteria.

In particular, the rest modeling improves the voicing detec-

tion, clearly indicated by “Voicing d-prime” and “Vx False

Alarm” rates. In addition, the 2006 method is considerably

faster due to a faster multiple-F0 estimation method.

The method was developed for singing note transcription

(not for singing F0-estimation), and the difference is more

explicit with the criteria for discrete note events used in [7].

See Table 1 in [7] for comparison.
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Abstract
This paper deals with the transcription of vocal melodies
in music recordings. The proposed system relies on two
distinct pitch estimators which exploit characteristics of the
human singing voice. A Hidden Markov Model (HMM) is
used to fuse the pitch estimates and make voicing decisions.
The resulting performance is evaluated on the MIREX 2006
Audio Melody Extraction data.

Keywords: Melody, singing voice, algorithm fusion.

1. Introduction
A key goal of digital music research is the automatic tran-
scription of polyphonic music recordings. Systems seeking
to perform full transcription have met with limited success
so far. Higher transcription accuracy has been obtained by
systems seeking to perform only a partial transcription con-
sisting of the chord sequence, the drum track or the melody.

The melody of a piece of music is generally defined as
the sequence of notes played by the lead instrument, but this
leaves considerable ambiguity since the factors determin-
ing which instrument is the “lead” to a human listener are
somewhat subjective and ill-defined. The fact that the raw
pitch accuracy scores reported in the MIREX 2005 Audio
Melody Extraction evaluation were considerably lower than
for monophonic recordings suggests that the systems en-
tered struggled to consistently identify the lead instrument.

In this paper, we aim to avoid this ambiguity by focusing
on the case where melody is carried by the main vocal line,
which is better defined objectively. Unlike standard tran-
scription systems based on a single pitch estimator, the pro-
posed system relies on two distinct pitch estimators which
exploit characteristics of the human singing voice. A HMM
is used to produce the final transcription by fusing the pitch
estimates and making voicing decisions.

Useful voice characteristics are described in Section 2,
followed in Section 3 by details of the system’s design. The
resulting performance is evaluated in Section 4 and conclu-
sions are given in Section 5.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
c© 2006 University of Victoria

2. Characteristics of the human singing voice
To avoid transcribing non-vocal instruments, the proposed
system exploits two salient characteristics of singing voice:
pitch instability and high-frequency dominance.

2.1. Pitch instability
Pitch instability refers to the property of the singing voice
that its pitch varies considerably over time compared with
other pitched instruments. This is mostly due to the fact
that vibrato typically exhibits an extent of ±60–200 cents
for singing voice and only ±20–35 cents for other instru-
ments [1]. Also, vocalists almost always sing legato, chang-
ing pitch smoothly during note attacks and transitions.

This characteristic has been exploited recently by a vo-
cal detection system [2]. After identification of the musical
key, the system filters the input audio by an inverse comb
filter which attenuates all the harmonic partials of the seven
notes in the key. Since vocal notes are rarely at exactly the
intended pitch, their partials survive this process while other
pitched instruments are attenuated.

2.2. High-frequency dominance
High-frequency dominance refers to the property of the sin-
ging voice that the power of its upper partials is larger than
with other instruments. This has been observed in a study
on vocal melody transcription [3], where the high frequency
(over 800Hz) channels of a correlogram led to more accurate
vocal pitch estimates than the low frequency channels.

We further investigated this effect in [4]. Figure 1 shows
the minimum, mean and maximum reliability of correlo-
gram channels for the estimation of vocal pitch over a range
of recordings, where reliability is defined as the proportion
of resulting pitch estimates within 50 cents of the ground
truth. The recordings used were the nine training files for
the MIREX 2005 Audio Melody Extraction evaluation fea-
turing singing voice as lead instrument. The figure demon-
strates that channels in the 3–15kHz range provide more re-
liable vocal pitch estimates than other channels.

3. Proposed System
Experimentally, the voice characteristics described above
are difficult to combine into a single standard pitch estima-
tor. Therefore we adopt a novel approach for melody tran-
scription, in which multiple transcriptions produced by par-
allel estimators are fused into a single transcription, hope-
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fully more accurate than using any one of the estimators. In
the following, two pitch estimators are used, but the system
design and the fusion method generalise to a larger number
of estimators.

The system diagram is shown in Figure 2. The input au-
dio is processed by two pitch estimators, each producing a
series of pitch estimates and associated reliability measures
at 10 ms intervals. These values are then input to a HMM
system to produce a single series of pitch estimates, with
unvoiced segments represented by 0 Hz estimates.

3.1. Semitone-cancellation & TWM
The first vocal pitch estimator consists of a pre-processing
stage in which a semitone-cancellation procedure empha-
sises the vocals, followed by the standard Two-Way Mis-
match (TWM) [5] monophonic pitch transcription algorithm.

3.1.1. Semitone-cancellation procedure
Experimentally, we found that the non-vocal cancellation
procedure proposed in [2] was too destructive of vocal pitch
and did not allow accurate pitch estimation. Thus, instead of
eliminating all the harmonic partials of interfering notes, we
eliminate fundamental frequencies only. Since most music
contains notes not in the musical key, the key detection stage
is discarded and all semitone notes are eliminated. Based on
the relative vibrato extent of vocals and other instruments
(see Section 2.1), the bandwidth of the cancellation filters
is set to ±20 cents. This process is implemented in the fre-
quency domain by zeroing suitable FFT bins [4]. Since most
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Figure 3. Pitch estimates after semitone-cancellation

partials of non-vocal notes survive this procedure, the output
is finally bandpass-filtered to 300–2000Hz, which roughly
corresponds to the pitch range of the human singing voice.

3.1.2. Pitch estimation by TWM
Informal listening tests show that the output of the semitone
cancellation procedure is generally dominated by vocals,
with components from other instruments being unpitched or
much quieter. Thus it is feasible to transcribe vocal pitch
by passing this output to a monophonic transcription algo-
rithm. This algorithm should favour predominant partials
on voiced frames to achieve high pitch accuracy. Since the
fusion system (see Section 3.3) favours pitch continuity, it
should also produce scattered pitch estimates on unvoiced
frames to achieve high voicing detection accuracy. The TWM
algorithm was chosen, as it offers a good compromise be-
tween these two objectives 1 . Other algorithms were found
to generally transcribe weak instrumental notes on unvoiced
frames [4], as illustrated in Figure 3.

3.1.3. Reliability measure
In order to assess which TWM pitch estimates are likely to
be correct, each estimate is further associated with a relia-
bility measure. This measure is obtained simply by mapping
the TWM error [5] linearly to the interval [0, 1].

3.2. High-frequency correlogram
The second vocal pitch estimator consists of a correlogram-
based monophonic pitch transcription algorithm using only
certain channels where the voice is likely to be predominant.

3.2.1. Correlogram design
The input audio is filtered by a 50-channel gammatone fil-
terbank spanning the range 100Hz–22kHz 2 . The unbiased
autocorrelation function (ACF) of each channel is computed
in 50ms frames at 10ms intervals. The predominant pitch is
then estimated in each channel and each frame by summing

1 We used the implementation described in U. Zölzer, editor. DAFX :
Digital Audio Effects. Wiley, 2002.

2 This filterbank was implemented using the Auditory Toolbox available
at http://cobweb.ecn.purdue.edu/˜malcolm/interval/1998-010/
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the ACF value at the first three multiples of each integer lag
in the singing voice range (1–12.5 ms) and picking the lag
resulting in the largest sum. We found this method more
reliable than full harmonic comb matching of the ACF.

3.2.2. High-frequency bias

Based on the channel reliability measures computed in Sec-
tion 2.2, only 19 correlogram channels in the range 3–15kHz
are used. The vocal pitch is then estimated for each time
frame by clustering together channel-wise pitch estimates
within 50 cents of each other and selecting the cluster with
largest population. Experimentally, this approach provides
the desired behaviour of accurate pitch estimates on voiced
frames and scattered estimates on unvoiced frames. Other
transcription algorithms applied to the input audio bandpass-
filtered to 3–15kHz also produced scattered estimates on un-
voiced frames, but achieved lower pitch accuracy [4].

3.2.3. Reliability measure

As above, each estimate is associated with a reliability mea-
sure. In this case, we wish to mark estimates as reliable
when there is a strong consensus among correlogram chan-
nels. Thus reliability is defined as the proportion of channel-
wise estimates belonging to the selected cluster.

3.3. Modified HMM
The fusion system is based on a HMM in which the hidden
states represent the exact pitch sung, and the observed data
are the pitch estimates and reliability measures from the two
estimators described above. The Viterbi algorithm is used to
produce the output transcription.

3.3.1. Dynamic state generation

Rather than defining an infinite number of hidden states to
model continuous frequency, the states of the HMM are de-
fined dynamically based on the input pitch estimates. With
K pitch estimates {ek,t}1≤k≤K at time t, the set of (K +1)
states is defined by Ωt = {ωj,t}0≤j≤K where

ωj,t =

{
unvoiced if j = 0,

ej,t if 1 ≤ j ≤ K.
(1)

The notations ωj,t and ej,t refer both to states and observa-
tions and to their assigned frequency values. The proposed
system uses two pitch estimators, and so K = 2.

To avoid transcription errors when both estimators briefly
fail, an additional dummy state is generated at time t for
each state at t−1 for which there is no nearby estimate at t.
More precisely, a state with frequency ωj,t−1 is added to Ωt

if there is no k for which ek,t is within 50 cents of ωj,t−1.
A pruning process is introduced in the Viterbi algorithm to
prevent such states persisting indefinitely [4].
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3.3.2. Observation probabilities
Unlike previous post-processing HMM systems [6], the pro-
posed system considers all pitch estimates {ek,t}1≤k≤K and
reliability measures {rk,t}1≤k≤K when calculating the ob-
servation probability of a given state ωj,t, defined by

P ({ek,t}1≤k≤K , {rk,t}1≤k≤K | ωj,t)

=
K∏

k=1

P (ek,t, rk,t | ωj,t). (2)

Each per-estimate observation probability P (ek,t, rk,t | ωj,t)
is calculated using one of three probability distributions spe-
cific to the corresponding estimator k, depending on whether
the state is voiced or unvoiced and whether the difference
d = 1200 × | log2(ωj,t/ek,t)| between state and estimate
frequencies is larger than 50 cents:

P (ek,t, rk,t | ωj,t)

=


P1,k(rk,t) if j = 0,
P2,k(rk,t) if j 6= 0 and d ≤ 50,

P3,k(rk,t) if j 6= 0 and d > 50.

(3)

These distributions were learnt by applying the two pitch
estimators to the nine training recordings mentioned in Sec-
tion 2.2 and forming histograms of the resulting reliability
measures. The distributions for the high-frequency correl-
ogram estimator are shown in Figure 4 and those for the
semitone-cancellation-TWM estimator have similar shape.
It can be seen that the reliability measures are generally low
on unvoiced frames and for incorrect pitch estimates, but
higher for correct pitch estimates.

3.3.3. Transition probabilities
Transition probabilities between voiced states are modelled
using a combination of Gaussians with variances of 50 and
100 cents representing the variation in pitch during a note

Music Information Retrieval Evaluation eXchange - MIREX 2006

50



Table 1. Summary evaluation for 19 30-second test recordings

System
Voicing False d-prime Raw Pitch Raw Chroma Overall
Recall Alarm Measure Accuracy Accuracy Accuracy

HF Corr. 58% 17% 1.20 59% 63% 63%
SC/TWM 68% 29% 1.00 56% 67% 58%
Proposed 71% 24% 1.25 71% 77% 67%

and between successive notes respectively. Other transition
probabilities are estimated from the ground truth transcrip-
tions for the training set. The transition probability from
state ωi,t−1 to state ωj,t is therefore defined as

P (ωj,t | ωi,t−1)

=


0.97 i=0, j =0,

0.03× 1
|Ωt|−1 , i=0, j 6=0,

0.014 i 6=0, j =0,

ci,t×(0.936×e
−d2
100 + 0.05×e

−d2
200 ), i 6=0, j 6=0

(4)

where d = 1200 × | log2(ωj,t/ωi,t−1)| denotes the pitch
difference in cents and ci,t is a normalisation factor chosen
such that the transition probabilities sum to one.

4. Evaluation
The proposed system was first tested on 19 30-second ex-
tracts covering a wide range of genres and instrumentations,
and evaluated according to the criteria used in the MIREX
2005 Audio Melody Extraction task. For comparison, the
two pitch estimators were tested individually by running the
HMM with a single set of pitch estimates. The results for
the three systems are shown in Table 1. It can be seen
that the proposed system considerably outperforms either
single-estimate system, with a better d-prime value for voic-
ing detection and substantially higher pitch accuracy. This
demonstrates that there is a benefit to using multiple pitch
estimators in parallel, and that the modified HMM system is
a suitable fusion method.

The system was also entered for the MIREX 2006 Melody
Extraction Task, with results being compiled for vocal melod-
ies, non-vocal melodies, and all melodies. In the case of
vocal melodies (see Table 2), the system achieved a simi-
lar transcription accuracy as above, ranking it third out of
five in both categories. The same test set was used in 2005
and when vocal melody results are compiled for the 2005
systems also, the proposed system ranks 4/15 for raw pitch
accuracy and 5/15 for overall accuracy.

The voicing performance was better than during previ-
ous testing, achieving a d-prime measure of 1.74, compared
with the top-scoring system’s d-prime measure of 1.75. The
system’s specialisation for vocal melodies is demonstrated
well by the results for non-vocal melodies, where both voic-
ing and pitch estimation performance fall considerably, and
overall accuracy drops to around 30%.

Table 2. MIREX 2006 results - Vocal Melodies

System
Voicing False d-prime Raw Pitch Raw Chroma Overall
Recall Alarm Measure Accuracy Accuracy Accuracy

Dressler 85.5% 28.7% 1.62 78.5% 81.6% 73.7%
Ryynänen 77.0% 15.6% 1.75 75.7% 76.9% 72.5%
Sutton 71.8% 12.3% 1.74 70.7% 71.6% 67.3%
Poliner 93.7% 44.3% 1.68 69.1% 70.6% 65.0%
Brossier 99.6% 97.9% 0.63 42.7% 53.5% 30.7%

5. Conclusion
It was hoped that by narrowing the melody transcription task
to vocal melodies only, a higher accuracy of transcription
would be achievable. Though results do not yet show this,
the pitch accuracy obtained is promising for a system which
has not yet been extensively developed. The pitch estima-
tion results also demonstrate the potential of using multiple
pitch estimators in parallel. The benefit of specialising in
vocal melodies is shown by the strong voicing performance,
where a relatively simple method achieves voicing perfor-
mance similar to the top-scoring system. More information
about the proposed system and a discussion of potential im-
provements are available in [4].
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Abstract
This paper describes the implementation submitted by the
author to the MIREX’06 (Music Information Retrieval eX-
change) evaluation track on audio-based music similarity
and retrieval. In addition, this paper summarizes the opti-
mization of this implementation and its evaluation prior to
submission. Finally, a detailed analysis and discussion of
the MIREX results is presented. Overall, this implementa-
tion performed slightly better in terms of quality and com-
putation time than the other implementations. However, the
measured differences were not significant.

1. Introduction
The perception of music similarity is subjective, context-
dependent, and multi-dimensional (including instrumenta-
tion, harmony, melody, rhythm etc.). Nevertheless, the ba-
sic approach of this implementation is one-size-fits-all. In
particular, given any two songs, without any further context,
one number is computed.

There are mainly two reasons for focusing on such ob-
viously over-simplistic approaches. First, there are appli-
cations where one-size-fits-all can be applied such as auto-
matic playlist generation. Second, evaluating models which
change their similarity rankings depending on the respective
context is significantly more complex.

1.1. Evaluation
The optimal approach to compare the performance of com-
putational models of music similarity is to evaluate them
within the context of their application. For example, one
approach could be to ask users which similarity model gen-
erates the best playlists.

However, empirical results suggest that even without a
specific application context similarity ratings can be evalu-
ated consistently by human listeners. For example, Logan
& Salomon [1] presented results from a listening test where
two subjects were asked to judge if a given song is similar
to another (yes/no). The subjects disagreed in only 12% of
the cases.

A similar consistency of judgments is reported in [2]. In
particular, a listening test was conducted where the subjects

*) Part of this work was done while the author was working at the
Austrian Research Institute for Artificial Intelligence (OFAI).

were given a song (X) and asked to rate its similarity to two
other songs (A and B) on a scale from 1 to 9. Thus, each sub-
ject was asked for two numbers given three songs: the sim-
ilarity of AX and the similarity of BX. The consistency of
the ratings from different subjects were compared in terms
of the differencedi = AX i − BXi which was computed for
each subjecti. The results showed that this difference was
surprisingly consistent. In 26% of the cases two subjectsi
andj had the same values (di = dj). In 32% of the cases
the difference was only 1 point (|di − dj | = 1). In about
19% of the cases the difference was 2 points (|di−dj | = 2).
Only in a few cases the listeners truly disagreed (in 15% of
the cases (|di − dj | ≥ 4).

A simpler alternative to conducting listening tests is to
use a genre classification approach (e.g. [1, 3, 4]). The ba-
sic assumption is that given a piece of music, very simi-
lar pieces can be found within the same genre. However,
special precautions need to be taken such as applying an
“artist filter” and using different collections with different
taxonomies (for a detailed discussion see [2]).

1.2. Related Work
All details of this implementation are given in [2], where
the implementation (Matlab source code), optimization, and
evaluation (including a listening test) are described.

The approach of combining a spectral similarity model
with information from fluctuation patterns is based on previ-
ous work presented in [4]. A similar version which was op-
timized with respect to computation time was submitted to
the genre classification track of MIREX’05 [5] where it (de-
spite only using a nearest neighbor classifier) outperformed
a number of powerful classifiers (such as support vector ma-
chines).

The spectral similarity part of this implementation is based
on the work of Mandel & Ellis [6]. However, alternative
approaches developed by Logan & Salomon [1] or Aucou-
turier & Pachet [3] could be applied as well. The main ad-
vantage of the approach used by Mandel & Ellis is that it is
computationally very fast.

The fluctuation patterns were presented in [7, 8] and are
based on previous work by Fr¨uwirth & Rauber [9, 10]. The
“gravity” descriptor extracted form the fluctuation patterns
was presented in [4]. The “bass” descriptor is based on
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work presented in [7] and was slightly modified as described
in [2]. The specific implementation of the fluctuation pat-
terns (e.g. using MFCCs) used for this implementation to
compute the fluctuation patterns was first described in [5].

2. Implementation of G1C
G1C stands for “Single Gaussian Combined”. The imple-
mentation submitted to MIREX is described in detail in [2]
including the Matlab code. In this section the techniques are
only roughly summarized.

First, for each piece of music the MFCCs are computed
for a maximum of two minutes from the center of the piece.
In particular, a 19-dimensional MFCC vector for every 23ms
of the signal is computed. The distribution of these vec-
tors is summarized using a single Gaussian (G1) with full
covariance matrix. The distance between two Gaussians is
computed using a symmetric version of the Kullback Leibler
divergence.

The fluctuation pattern (FP) describes the modulation of
the loudness amplitudes per frequency bands. To some ex-
tent it can describe periodic beats. A FP is a two-dimensional
matrix where each row corresponds to a frequency-band and
each column to a modulation frequency (in the range of
0-10Hz). The values of this matrix describe how strong the
fluctuation of the loudness amplitude is within a specific fre-
quency band and at a specific modulation frequency.

To compute the fluctuation patterns the Mel spectrogram
(with loudness in dB) is used. The Mel spectrogram is ob-
tained in an intermediate step when computing the MFCCs.
In the next step the energy in each frequency bands is re-
grouped into 12 bands. This re-grouping is done such that
variations in lower frequency bands are emphasized. The
Mel spectrogram is then chopped into 3 second segments.
For each segment, the loudness modulation in each frequency
band is computed using an FFT. The modulation frequen-
cies are analyzed in the range of 0-10Hz. The modulation
amplitudes are weighted to emphasize modulation around
4Hz based on a model of fluctuation strength [11, 12]. Spe-
cific modulation patterns are emphasized using smoothing
and edge detection filters. All fluctuation patterns computed
for each 3 second window are combined by computing the
median of all patterns. The patterns of two pieces of mu-
sic are compared by computing the Euclidean distance (and
first converting the matrix into a vector by concatenating the
rows).

From the FP of each song two features are extracted. One
is the “gravity” (FP.G). It is the center of gravity of the FP
along the modulation frequency dimension. It roughly cor-
responds to the perception if a piece is slow or fast. The
other is the “bass” (FP.B). It is computed as the fluctuation
strength of the lower frequency bands at higher modulation
frequencies. The distance of two songs for each of these
descriptors is computed as the absolute difference of values.

Given the four distance values (for G1, FP, FP.B, and
FP.G) the overall similarity of two pieces is computed as a

weighted linear combination. The normalization and weights
used are described in detail in [2]. If the inversion of the co-
variance necessary for G1 leads to numerical problems for
any song, then the combination weight is set to zero when it
is compared to any other song. The optimization and evalu-
ation of the weights is briefly described in Section 3.

2.1. Computational Resources
The following computation times are measured running Mat-
lab code (Windows XP) on a Pentium M 2GHz processor.
Given an audio file in WAV format extracting the features
for one piece of music takes about 2 seconds. Computing
the spectral similarity of two songs takes about 0.1 millisec-
onds. The FP part of the similarity computation is much
faster as it only requires computing the Euclidean distance
of two vectors with 362 elements each. For each song a to-
tal of 362 + 2×19×19+19 (=1103) values need to be stored.
(In addition to the G1 covariance matrix also the inverted
covariance matrix is stored so it does not need to be recom-
puted for each similarity computation.) For a comparison of
computation times see Section 4.5 and Figure 6.

3. Optimization and Evaluation
To optimize the combination weights and to evaluate G1C
a genre-based evaluation procedure was used. In particu-
lar, given a music collection containing pieces for which
the genre and artist is known the following steps were com-
puted: First, for each piece (query) all pieces from the same
artist in the collection are removed. Second, the piece most
similar to this query is found (according to the similarity
model). If this piece is from the same genre, the score for the
query piece is 1, otherwise 0. Finally, the average score for
all queries is computed. This is identical to nearest neigh-
bor genre classification, measuring the performance using
leave-one-out cross-validation, and using an artist filter to
ensure that training and test set contain non-overlapping sets
of artists.

The combination weights of G1C were optimized using
two music collections (DB-MS and DB-L described in [2]).
The parameter space was evaluated using a grid search in
combination with the genre-based evaluation approach. The
combination which performed best in average on the two
music collections, was evaluated using 4 collections (DB-
S, DB-ML, DB-30, DB-XL). In addition a listening test was
conducted to analyze how the genre-based results are related
to judgments made by human listeners. The results of this
test confirmed that improvements measured with the genre-
based procedure are also measurable using a listening test.
(For details see [2].)

4. MIREX’06 Results
The raw data and details of the evaluation procedure can be
found on the MIREX pages.1 This section briefly describes
the listening test setup and analyzes the results.

1 http://www.music-ir.org/mirex2006/index.php
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4.1. Listening Test Setup
To evaluate the performance of the algorithms a user study
was conducted by IMIRSEL.2 First, each of the 6 algo-
rithms submitted to the contest retrieved the 5 most similar
songs form the database given the query. Songs from the
same artist as the query were filtered. The main reason for
filtering songs from the same artist is that the intention was
not to evaluate how well the submissions perform in artist
identification.3 Overall 60 queries were used for the listen-
ing test. Each candidate and query pair was rated by three
subjects.

Only researchers working on related topics participated
in the listening test. This restriction was necessary due to
legal issues.4 The participants were given a query song and
a list of 30 candidate songs and asked to rate the similarity
of each candidate song on a scale from 0-10 using a slider
(with a resolution of 0.1) where 0 corresponds to not similar
and 10 corresponds to very similar (fine scale). Instead of
using the slider the participants could directly enter a num-
ber into a text box. Overall, 32% of the fine score ratings the
participants entered are whole numbers (0,1,2,...) and 16%
are half numbers (0.5,1.5,...). In addition, the participants
were asked to rate each of the 30 songs on a broad scale
with the options: not similar (NS), somewhat similar (SS),
and very similar (VS).

4.2. Official Ranking
The official ranking of the algorithms was computed using
the data from the slider (fine scale). For each query and
algorithm a score was computed. This score is the mean
of the 15 (=3×5) similarity ratings (each in the range 0-10)
associated with each query/algorithm pair. In the next step
the Friedman test is computed, the results of the Friedman
test are then post-processed to find significant differences
between algorithms. The corresponding Matlab code is:

[p,table,stats] = friedman(M);
multcompare(stats, ...

’ctype’, ’tukey-kramer’, ...
’estimate’, ’friedman’, ...
’alpha’, 0.05);

whereM is a matrix with 60 rows (corresponding to the
queries) and 6 columns (corresponding to the algorithms).
The Friedman test was chosen because it is a non-parametric
test which does not assume a normal distribution of the data.

For each query the Friedman test ranks the algorithms
with respect to their scores. If an algorithm is consistently
ranked higher than another one, then it is significant better.
On the other hand, if the algorithm A scores better for half
of the queries and algorithm B for the other half, then the
difference is not significant. (Note that this is the case even

2 http://www.music-ir.org/evaluation/
3 For a discussion on the relationship between artist identification and

music similarity see [5].
4 For details see the email by Stephen Downie on the MIREX list on

September 2, 2006.

Mean Median

EP 4.30 4.05
TP 4.23 4.05
VS 4.04 3.50
LR 3.93 3.70
KWT* 3.72 3.40
KWL* 3.39 2.95

Table 1. Statistics of the average fine score per algorithm.
The minimum value is 0 (not similar) and the maximum is
10 (very similar).

if algorithm B has much higher scores in average.) Estimat-
ing the significance of differences is very important as some
difference are very small and wrong conclusions could eas-
ily be drawn.

The results are shown in Figure 1 (left side). Note that EP
marks the G1C algorithm and “*” marks all submissions that
contain bugs according to their authors. Most of the mea-
sured differences between algorithms are not significant ac-
cording to the Friedman test (at p-level 0.05). Only KWL*
performs significantly worse than some others.

4.3. Other Fine Scale Results
The right side of Figure 1 shows the results when the me-
dian is computed instead of the mean of the 15 ratings to
obtain the score for each query/algorithm pair. For some
query/algorithm pairs the differences between the two ap-
proaches can be very large. For example, the in contrast to
the mean the median would not distinguish between 1,2,9
and 1,2,3. The advantage of using the median is that it is
less sensitive to outliers. However, as can be seen the sig-
nificance of the measured differences remains the same.

Figure 2 shows the results when using a balanced two-
way ANOVA instead of the non-parametric Friedman test.
Although the necessary assumptions are not perfectly met
the results are very similar to those of the Friedman test.

Figure 3 shows the distribution of scores per query for
each algorithm. As can be seen, when each of the 60 scores
is computed as the mean of the respective 15 observations
the normal distribution is a better approximation than in the
case where the median is used.

Table 1 shows statistics of all ratings. The average ratings
are lower than those reported in [2] where the mean ratings
was 6.37 (one a similar scale from 1-9). The most likely rea-
son for the difference is the that a different music collection
was used. As shown in [2] the performances vary largely
depending on the collection. In any case, the average values
indicate that the overall quality of the similarity measures
might not be satisfactory for users. To evaluate this would
require tests within the application context.

4.4. Broad Scale Results
Figure 4 (left side) shows how the broad scale ratings are
distributed per algorithm. Overall, G1C got the largest num-
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Figure 1. Evaluation results using the Friedman test. The left side shows the final ranking of the contest. The red circles mark
the mean ranks computed using the Friedman test. The blue lines mark the significance bounds using a level of p=0.05. The
right side differs from the left side with respect to how the score was computed per query/algorithm pair. In particular, the
median was used instead of the mean.
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Figure 2. Results using a balanced two-way ANOVA instead of the Friedman test (see Figure 1). The left side uses the mean
and the right side uses the median to compute the score for each query/algorithm pair given the 15 observations.
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Figure 3. Histogram of the 60 scores per algorithm. On the left side the scores are computed as the mean of all 15 observations
(subject ratings) and on the right side as the median.

ber of very similar ratings (VS) and about the same number
of not similar ratings (NS) as TP. The right side of Figure 4
shows a similar visualization using the fine scale data. As
can be seen, both scales have produced very similar results
except that the fine scale resulted in more fine grained dis-
tinctions.

The MIREX webpage lists a number of statistics com-
puted based on the broad scale data. There are a number
of different ways to interpret the broad scale data. Each
interpretation assigns a different number of points to each
similarity category. The optimal interpretation depends very
much on the final application. In the same way the broad
categories are assigned to different points the fine scale could
be mapped to a non linear scale to emphasize certain areas
of the scale differently.

Given a specific interpretation the average of points as-
signed to an algorithm per query is used for further analysis.
The statistics are listed in Table 2 and Figure 5 shows the
corresponding significance boundaries using the Friedman
test (and the mean to compute the scores).

4.5. Other Statistics

In addition to the results of listening test a number of other
statistics were computed. These are based on a collection
of 5000 pieces which included 330 cover songs. For some
of the statistics reported here, the cover songs were filtered
from the collection. In general the statistics are based on

computing the compute distance matrix (5000×5000 val-
ues).

4.5.1. Computation Times

Figure 6 shows the computation times for some of the sub-
missions. When interpreting the results it is necessary to
consider that some of the algorithms have not been opti-
mized with respect to computation times. However, the mea-
sured computation times are rough indicators of the com-
plexity of each algorithm.

Overall G1C is fastest to extract the features from the
5000 songs and compute the complete distance matrix. G1C
requires only about half the time to extract the features than
the next fastest submission. Lidy & Rauber (LR) submit-
ted by far the fastest algorithm with respect to the distance
computation time. Depending on the task this can be a sig-
nificant advantage. However, to improve the distance com-
putation time of G1C and TP, for example, M-trees [13] and
other indexing strategies could be used. In particular, for
most applications it is not necessary to compute a complete
distance matrix.

4.5.2. Characteristics of the Similarity Spaces

Most similarity space indexing algorithms make assump-
tions about the similarity space. To study the properties of
the similarity space three aspects were analyzed for those
algorithms which allowed computation of the complete dis-
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Figure 4. The left side shows the number of times per algorithm the songs were rated with each of the broad similarity scale
categories. The categories on the broad scale are: not similar (NS), somewhat similar (SS), and very similar (VS). The right
side uses the data from the fine scale. For each algorithm the lowest block (green) corresponds to a rating of 10, the highest
block (red) to a rating of 0. All ratings are rounded to the nearest whole number.

Points per Category Scores
Abbreviation NS SS VS EP TP VS LR KWT* KWL*

Greater0 0 1 1 62.7 62.3 58.6 57.9 55.7 50.9
Psum 0 1 2 42.5 41.1 38.8 37.4 34.9 31.3
Wcsum 0 1 3 35.8 34.0 32.3 30.6 28.0 24.8
Sdsum 0 1 4 32.4 30.5 29.0 27.1 24.6 21.6
Greater1 0 0 1 22.3 19.9 19.1 16.9 14.2 11.8

Table 2. Evaluation scores using the broad scale data for different interpretations of the data. The values are normalized so
that the scale ranges from 0 (complete failure) to 100 (perfect). The general tendency is the same regardless of the points per
category.
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Figure 5. The same evaluation results as shown in Figure 1 except that the broad score (with different interpretations) is used
instead of the fine score. In terms of the insignificance of the differences the results are similar to those using the fine score
data.
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Figure 6. Computation times for some of the submissions.
The lower part of each bar (yellow) is the feature extrac-
tion time (for 5000 songs). The upper part (blue) is the
distance computation time for the complete distance matrix
(which requires computing the distance of 12.5 million song
pairs). For KWL* the times for the individual parts were
not recorded. The VS submission was not able to compute
the full distance matrix within a reasonable amount of time.
The times were measured on a machine with: Dual AMD
Opteron 64, 1.6 GHz, 4 GB RAM, running Linux (CentOS).

tance matrix within reasonable time.5

First, the problem of “always similar songs” (also known
as “hubs”) was analyzed. Hubs in music collections were
first reported by Auctouturier & Pachet [14]. A detailed dis-
cussion can be found in [15]. A hub is a song that (according
to the computational model of similarity) is very similar to
a large number of other songs. However, this computational
similarity does not correspond to perceptual similarity.

Some similarity measures (such as those based on spec-
tral similarity) are affected. However, the number of these
hubs is usually very low, and in a collection of several thou-
sand pieces only few can be observed. Hubs are easy to
detect when analyzing a distance matrix, however, they are
difficult to detect when only computing a number given two
songs. Tim Pohle’s submission uses an interesting approach
to prevent extreme hubs.

Table 3 shows the maximum number of times a song ap-
peared in the top 5 ranks. The main observation is that in the
subset of cover songs one “always similar” song appeared
for G1C but not for the other submissions. The existence
of “always similar” outliers for G1C was also documented
in [2].

Very closely related to the analysis of “always similar”
songs is the question if there are any songs which never oc-
cur in the top 5 rankings. In the collection used for this
contest, no cases of “always dissimilar” songs were found.
However, as shown in [2] songs which are dissimilar to al-
most all songs in the collection (including songs which sound
similar) can occur using G1C.

Of interest is also if the triangular inequality holds in the

5 The analysis was implemented by Kris West.

Collection Size EP TP LR KWT* KWL*

4670 48 62 42 61 24
5000 1753 62 42 61 24

Table 3. Maximum number of times a song was ranked in
the top 5 most similar songs of all songs. The lowest possi-
ble value is 5. The highest possible value equals the size of
the collection minus 1.

similarity space the submission defines. The triangular in-
equality states that the sum of the distances AX and BX is
larger or equal to the distance AB (in our case A, B, and X
are songs). This inequality is an important characteristic of
metric spaces and a number of algorithms (especially index-
ing algorithms) rely on it. To measure the degree to which
the submissions fulfill the inequality a random sample of
triangles is drawn from the distance matrix. Each of these
triangles is tested whether the inequality is fulfilled. For the
submissions G1C, KWT*, and LR the inequality held for all
samples drawn. For TP the inequality held in about 32% of
the cases, and for KWT* in about 54%.

In [2] a different music collection is used and G1C ful-
fills the inequality only in 36% of the cases. One possible
explaination could be that the submitted version of G1C is
not exactly the same as the one used on [2]. The only differ-
ence is that the contribution of the spectral similarity is set
to zero if nummerical problems occur when computing the
inverse covariance matrix. However, nummerical problems
only occur very seldomly.

4.5.3. Genre-based Evaluation

Previous work has shown that evaluations based on genre
data correspond to evaluations based on similarity ratings
gathered in listening tests [2]. However, the genre data avail-
able for the music collection used in this contest was not
reliable. For example, Britney Spears and Depeche Mode
are assigned to the same genre (rock). Furthermore, the dis-
tribution of songs per genre is very unbalanced. This is re-
flected in the results computed using an artist filter which do
not reflect the results from the listening test.

The results without using an artist filter are more useful,
because they basically measure the artist identification per-
formance. However, identifying artists and finding similar
pieces are not the same tasks. For example, an algorithm
that can identify recording environments or other produc-
tion effects might perform very well for artist identification
but not for music similarity. for a more detailed discussion
on this see [5, 2].

5. Discussion
There are two reasons why the measured differences (us-
ing the listening test data) were not significant. First, the
differences between the algorithms are very small. Second,
the evaluation procedure was not adequate to measure these
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small differences.

5.1. Glass Ceiling
Aucouturier and Pachet pointed out a glass ceiling for spec-
tral similarity [14]. The results of this listening test have
confirmed this ceiling. In particular, G1C is only marginally
better than the author’s submission to the MIREX 2005 and
ISMIR 2004 genre classification contests [2]. The main
improvements from 2004 and 2006 have been in terms of
computation time which has been reduced by several mag-
nitudes.

Thus, it is not surprising that some of the submissions
have reached the same glass ceiling. In particular, the over-
all difference between G1C and TP is very difficult to mea-
sure.

5.2. Evaluation Procedure
A very straightforward approach to increase the power of the
test (and allow us to measure significant differences) would
have been to use a larger number of queries. To reduce the
overall load on the subjects, fewer subjects per rating and
fewer candidates per algorithm and query could be used.
Thus, more than 10 times as many queries could have been
used in the evaluation without increasing the effort per sub-
ject.

Using fewer candidates per algorithm and query would
also have the advantage that the size of the local context
would be reduced. The local context is the context in which
the subjects rate the songs. This context consists of the
query, and the 30 candidates to be rated. A smaller local
context is likely to lead to more consistent ratings.6 For ex-
ample, in [2] the local context consisted of only 3 songs and
the consistency was higher. However, when using a larger
context (e.g. when evaluating several algorithms) the sub-
jects should be given tools to help them apply ratings con-
sistently. One such option would be to implement a sort
function for the ratings.

Figures 7 and 8 visualize the consistency of the ratings.
Figure 9 shows the consistency of the ratings from the listen-
ing test described in [2]. The consistency is computed as fol-
lows. For each query and candidate pair (60×30) there are 3
ratings (by three different subjects). We compute the abso-
lute differences between these ratings. In total this results in
60×30×3 absolute differences. In an ideal case all of these
would be zeros. In the worst case (worse than random) a
large proportion of these values would be 10 (which is the
maximum possible disagreement on the fine scale from 0-10).

The consistency can be quantified and compared using
the ratios of pairs with a very high consistency. In particular,
the first quarter of bins (using the histograms in Figures 7-9)
is considered to be highly consistent. In case of the broad

6 It is important to note that splitting the candidates per query into two
or more sets is not a solution. If the candidates are rated in a different local
context than the ratings are not comparable. As a result a test such as the
Friedman test could not be used to evaluate the results.
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Figure 7. Histogram of absolute rating differences (broad
score).

0 2 4 6 8 10
0

100

200

300

400

500

600

700

800

Absolute Difference

N
um

be
r 

of
 P

ai
rs

Figure 8. Histogram of absolute rating differences (fine
score).
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Figure 9. Histogram of absolute rating differences for the
listening test reported in [2] where a scale from 1-9 was
used.
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Evaluation Procedure Consistent Pairs

Broad Scale 51%
Fine Scale 55%
Evaluation reported in [2] 58%

Table 4. Percentage of very consistent pairs of ratings for
different evaluation procedures.

score data this means the ratio of exact same ratings com-
pared to the number of all pairs. For the fine score data the
first 5 bins are used. For the listening test conducted in [2]
the first 2 bins are used. The results are given in Table 4.
The results question the use of the broad scale and support
the argumentation for using a smaller local context.

6. Conclusions
Future listening tests should use a larger number of queries.
A fine scale is preferable to a broad scale because the rat-
ings are more consistent. Furthermore, the size of the local
context should be reduced to increase the consistency of the
ratings.

However, even with improved evaluation procedures the
differences between algorithms which have reached the “glass
ceiling” are very marginal and might not be relevant for
most applications. Evaluations within the context of appli-
cations are clearly desirable. A question of particular inter-
est is if the similarity measures in their current form (despite
their obvious limitations) can be successfully applied in any
applications.

6.1. Conclusions of the Evaluation Results
G1C was fastest overall and achieved the highest score. How-
ever, the measured differences were not significant. The
submission by Lidy & Rauber is the only algorithm which
uses a vector space. This results in extremely fast distance
computations and also allows the application of their sub-
mission to a larger number of problems. Their submission
is probably the most suitable for extremely large collections
(containing millions of pieces). Tim Pohle presented a very
interesting approach which can also be applied to G1C to
reduce the number of “always similar” outlier songs. Fur-
thermore, the distance computation time for his submission
is only about half of that for G1C which can be a major ad-
vantage for some applications.
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Abstract
In a recent empirical study, various methods for detecting
the onset times of musical notes in audio signals were eval-
uated [1]. The study focussed on published methods based
on spectral features such as the magnitude, phase and com-
plex domain representations, and compared existing meth-
ods (spectral flux, phase deviation and complex difference)
with proposed improvements to these methods (weighted
phase deviation, normalised weighted phase deviation and
rectified complex difference). Two test sets were used: a set
of short excerpts from a range of instruments (1060 onsets),
plus a much larger data set of piano music (106054 onsets).
Results showed a similarly high level of performance with
a magnitude-based (spectral flux), a phase-based (weighted
phase deviation) or a complex domain (complex difference)
onset detection function. For MIREX 2006, the following
five onset detection functions were submitted: spectral flux,
complex domain, rectified complex domain, weighted phase
deviation and normalised weighted phase deviation.

Keywords: MIREX, spectral flux, phase deviation, complex
domain

1. Introduction
Recent reviews and evaluations of onset detection methods
can be found in [2, 3, 4, 1]. The onset detection functions de-
scribed in this document are more fully described and com-
pared in [1]. Although it is clear that different methods are
suitable for different data sets, we focus on simple, general-
purpose methods of finding onsets. All methods presented
here share the same peak picking algorithm, which limits
the closeness of successive onsets. For polyphonic music,
this might penalise the algorithms, depending on how the
evaluation is performed.

2. Onset Detection Functions
An onset detection function is a function whose peaks are
intended to coincide with the times of note onsets. Onset
detection functions usually have a low sampling rate (e.g.
100Hz) compared to audio signals; thus they achieve a high

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
c© 2006 University of Victoria

level of data reduction whilst preserving the necessary in-
formation about onsets. Most onset detection functions are
based on the idea of detecting changes in one or more prop-
erties of the audio signal.

If an audio signal is observed in the time-frequency plane,
an increase in energy (or amplitude) within some frequency
band(s) is a simple indicator of an onset. Alternatively, if
we consider the phase of the signal in various frequency
bands, it is unlikely that the frequency components of the
new sound are in phase with previous sounds, so irregulari-
ties in the phase of various frequency components can also
indicate the presence of an onset. Further, the phase and en-
ergy (or magnitude) can be combined in various ways to pro-
duce more complex onset detection functions. These ideas
form the basis of the onset detection functions described in
this paper.

All of the methods presented here make use of a time-
frequency representation of the signal based on a short time
Fourier transform using a Hamming windoww(m), and cal-
culated at a frame rate of 100 Hz. IfX(n, k) represents the
kth frequency bin of thenth frame, then:

X(n, k) =

N
2 −1∑

m=−N
2

x(hn+m) w(m) e−
2jπmk

N

where the window sizeN = 2048 (46 ms at a sampling rate
of r = 44100 Hz) and hop sizeh = 441 (10 ms, or 78.5%
overlap).

2.1. Spectral Flux
Spectral flux measures the change in magnitude in each fre-
quency bin, and if this is restricted to the positive changes
and summed across all frequency bins, it gives the onset
functionSF [5]:

SF (n) =

N
2 −1∑

k=−N
2

H(|X(n, k)| − |X(n− 1, k)|)

whereH(x) = x+|x|
2 is the half-wave rectifier function.

Empirical tests favoured the use of theL1-norm here over
theL2-norm used in [6, 2], and the linear magnitude over
the logarithmic (relative or normalised) function proposed
by Klapuri [7].
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2.2. Phase Deviation
The rate of change of phase in an STFT frequency bin is an
estimate of the instantaneous frequency of that component.
This can be calculated via the first difference of the phase of
X(n, k). Letψ(n, k) be the phase ofX(n, k), that is:

X(n, k) = |X(n, k)| ejψ(n,k)

where−π < ψ(n, k) ≤ π. Then the instantaneous fre-
quency is given by the first differenceψ′(n, k):

ψ′(n, k) = ψ(n, k)− ψ(n− 1, k)

mapped onto the range(−π, π]. The change in instanta-
neous frequency, which is an indicator of a possible onset,
is given by the second difference of the phase:

ψ′′(n, k) = ψ′(n, k)− ψ′(n− 1, k)

which is also mapped onto the range(−π, π]. Large discon-
tinuities in the unwrapped phase or its derivatives can wrap
around to 0, but the onset detection function based on phase
deviation,PD , takes the mean of the absolute changes in in-
stantaneous frequency across all bins [8, 2], which reduces
the chance of a missed detection:

PD(n) =
1
N

N
2 −1∑

k=−N
2

|ψ′′(n, k)|

2.3. Weighted Phase Deviation
Phase deviation performs poorly because of “noise intro-
duced by components with no significant energy” [2]. That
is, the function considers all frequency binsk equally, al-
though the energy of the signal is concentrated around the
bins containing the partials of the currently sounding tones.
The weighted phase deviation(WPD) function takes this
into account by weighting the phase deviation values by the
magnitude of the corresponding frequency bin:

WPD(n) =
1
N

N
2 −1∑

k=−N
2

|X(n, k) ψ′′(n, k)|

The normalised weighted phase deviation(NWPD) func-
tion is similar, except that the sum of the weights is factored
out, to give a weighted average phase deviation:

NWPD(n) =

∑N
2 −1

k=−N
2
|X(n, k) ψ′′(n, k)|∑N

2 −1

k=−N
2
|X(n, k)|

2.4. Complex Domain
Another way of jointly considering amplitude and phase is
to search for departures from “steady-state” behaviour in
the complex domain, by calculating the expected amplitude

and phase of the current binX(n, k), based on the previous
two binsX(n − 1, k) andX(n − 2, k). The target value
XT (n, k) is estimated by assuming constant amplitude and
rate of phase change:

XT (n, k) = |X(n− 1, k)| eψ(n−1,k)+ψ′(n−1,k)

and therefore a complex domain onset detection function
CD can be defined as the sum of absolute deviations from
the target values:

CD(n) =

N
2 −1∑

k=−N
2

|X(n, k)−XT (n, k)|

This formulation is simpler but equivalent to the complex
domain detection function in [2, 9].

2.5. Rectified Complex Domain
One problem with theCD method is that it does not distin-
guish between increases and decreases in amplitude of the
signal, so that onsets are not distinguished from offsets. The
rectified complex domain (RCD) onset detection function
uses half-wave rectification to preserve the complex differ-
ences only in spectral bins where energy is increasing:

RCD(n) =

N
2 −1∑

k=−N
2

RCD(n, k)

where

RCD(n, k) =


|X(n, k)−XT (n, k)|, if|X(n, k)| ≥

|X(n− 1, k)|
0, otherwise

3. Onset Selection
The onsets are selected from the detection function by a
peak-picking algorithm which finds local maxima in the de-
tection function, subject to various constraints. The thresh-
olds and constraints used in peak-picking have a large im-
pact on the results, specifically on the ratio of false positives
to false negatives. For example, a higher threshold gener-
ally reduces the number of false positives and increases the
number of false negatives. The best values for thresholds are
dependent on the application and the relative undesirability
of false positives and false negatives.

Peak picking is performed as follows: each onset detec-
tion functionf(n) is normalised to have a mean of 0 and
standard deviation of 1. Then a peak at timet = nh

r is se-
lected as an onset if it fulfils the following three conditions:

f(n) ≥ f(k) for all k such that n− w ≤ k ≤ n+ w

f(n) ≥
∑n+w
k=n−mw f(k)
mw + w + 1

+ δ

f(n) ≥ gα(n− 1)
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PN PP NP CM Sonatas Error
SF 0.952 0.984 0.967 0.882 0.964±0.017 8.8
WPD 0.947 0.912 0.966 0.836 0.912±0.028 9.6
NWPD 0.938 0.971 0.958 0.879 0.944±0.021 10.3
CD 0.946 0.978 0.936 0.876 0.966±0.015 12.8
RCD 0.963 0.981 0.963 0.877 0.955±0.018 9.3

Table 1. Results of onset detection tests for 5 onset detection func-
tions (SF, WPD, NWPD, CD and RCD). The first four columns
show the maximum of the F-measure for the four subsets of data
set 1: pitched non-percussive (PN), pitched percussive (PP), non-
pitched percussive (NP) and complex mixture (CM). The last 2
columns show results for data set 2 (Sonatas): the F-measure with
standard deviation of F-measures across sonatas and average ab-
solute error in ms.

wherew = 3 is the size of the window used to find a local
maximum,m = 3 is a multiplier so that the mean is calcu-
lated over a larger range before the peak,δ is the threshold
above the local mean which an onset must reach, andgα(n)
is a threshold function with parameterα given by:

gα(n) = max(f(n), αgα(n− 1) + (1− α)f(n))

Experiments were performed with various values of the
two parametersδ andα, and it was found that best results
were obtained using both parameters, but the improvement
in results due to the use of the functiongα(n) was marginal,
assuming a suitable value forδ is chosen.

4. Results
Before submission, two data collections were used for test-
ing the onset detection functions. The data from Bello et
al. [2], consists of 4 sets of short excerpts from a range
of instruments, classed into the following groups: NP —
non-pitched percussion, such as drums (119 onsets); PP —
pitched percussion, such as piano and guitar (577 onsets);
PN — pitched non-percussion, in this case solo violin (93
onsets); and CM — complex mixtures from popular and jazz
music (271 onsets). The second data collection consists of
about 4 hours of Mozart Piano Sonatas (106054 onsets) —
two orders of magnitude more than that used in other evalu-
ations — and includes complex passages such as trills, fast
scale passages with pedal and arpeggiated chords. The level
of complexity is such that a human annotator would not be
able to mark all the onsets precisely.

Table 1 shows the results across these two data sets. In
each case, the results are shown for the point on the ROC
curve which gives the maximum value of the F-measure.
That is, the ground-truth data was used to select optimal
values ofδ andα. Further issues involving evaluation are
discussed in [1].

In these results, the spectral flux, weighted phase devi-
ation and complex domain methods all achieved a similar
level of performance on this data, so that the choice of a

Entry Precision Recall F-measure
roebel-3 0.836 0.779 0.788
roebel-2 0.831 0.769 0.780
roebel-1 0.861 0.746 0.777
du 0.797 0.799 0.762
brossier-hfc 0.752 0.774 0.734
dixon-sf 0.736 0.790 0.726
brossier-dual 0.769 0.735 0.724
brossier-complex 0.780 0.725 0.721
dixon-rcd 0.735 0.765 0.716
dixon-cd 0.709 0.776 0.710
brossier-specdiff 0.764 0.701 0.707
dixon-wpd 0.663 0.786 0.685
dixon-nwpd 0.524 0.908 0.620

Table 2. Average precision, recall and F-measure for the best pa-
rameter setting for each of the MIREX 2006 entries, sorted by F-
measure.

suitable algorithm could be based on other factors such as
simplicity of programming, speed of execution and accu-
racy of correct onsets (right column), which all speak for
the spectral flux onset detection function (SF).

The results from the MIREX 2006 competition are shown
in Table 2. The performance of the onset detection functions
is much lower than in Table 1. There are a number of rea-
sons why this is the case: first, the parameter settings used
in Table 1 were refined with knowledge of the onset times,
allowing some amount of overfitting to the data. From the
results in Table 2, it is clear that the range of parameter set-
tings for the submitted onset detection functions was too
narrow, so that the optimal point on the ROC curve was
not reached in each case. This is particularly clear for the
case of the NWPD function, where a bug in the submitted
code led to wrong parameter values being used. It is also
worth noting that the data used in Table 1 are relatively easy
for onset detection; the first part consists of simple music,
and the second part consists of complex music played on a
simple-to-detect instrument, the piano. Further analysis of
the results will yield insights into the specific strengths and
weaknesses of the individual algorithms.

5. Acknowledgements
This work was supported by the Vienna Science and Tech-
nology Fund, project CI010Interfaces to Music, and the EU
project S2S2. OFAI acknowledges the support of the min-
istries BMBWK and BMVIT. Thanks to Juan Bello for pro-
viding test data, and to the MIREX team for conducting the
MIREX evaluation.

References

[1] S. Dixon, “Onset detection revisited,” inProceedings of the
9th International Conference on Digital Audio Effects, 2006,
pp. 133–137.

Music Information Retrieval Evaluation eXchange - MIREX 2006

64



[2] J.P. Bello, L. Daudet, S. Abdallah, C. Duxbury, M. Davies,
and M. Sandler, “A tutorial on onset detection in musical sig-
nals,” IEEE Transactions on Speech and Audio Processing,
vol. 13, no. 5, pp. 1035–1047, 2005.

[3] N. Collins, “A comparison of sound onset detection algo-
rithms with emphasis on psychoacoustically motivated de-
tection functions,” in118th Convention of the Audio Engi-
neering Society, Barcelona, Spain, 2005.

[4] J.S. Downie, “2005 MIREX contest results - audio onset de-
tection,” www.music-ir.org/evaluation/mirex-results/audio-
onset, 2005.

[5] P. Masri, Computer Modeling of Sound for Transformation
and Synthesis of Musical Signal, Ph.D. thesis, University of
Bristol, Bristol, UK, 1996.

[6] C. Duxbury, M. Sandler, and M. Davies, “A hybrid approach
to musical note onset detection,” inProceedings of the 5th
International Conference on Digital Audio Effects, 2002, pp.
33–38.

[7] A. Klapuri, “Sound onset detection by applying psychoa-
coustic knowledge,” inProceedings of the IEEE Interna-
tional Conference on Acoustics, Speech and Signal Process-
ing, Phoenix, Arizona, 1999.

[8] C. Duxbury, J.P. Bello, M. Davies, and M. Sandler, “A com-
bined phase and amplitude based approach to onset detection
for audio segmentation,” inProceedings of the 4th European
Workshop on Image Analysis for Multimedia Interactive Ser-
vices (WIAMIS-03), 2003, pp. 275–280.

[9] J.P. Bello, C. Duxbury, M. Davies, and M. Sandler, “On the
use of phase and energy for musical onset detection in the
complex domain,”IEEE Signal Processing Letters, vol. 11,
no. 6, pp. 553–556, 2004.

Music Information Retrieval Evaluation eXchange - MIREX 2006

65



MIREX 2006: Spectral-flux based Musical Onset Detection  
 

Yunfeng Du 
Institute of Acoustics,  

Chinese Academy of Sciences 
ydu@hccl.ioa.ac.cn 

 
Ming Li 

Institute of Acoustics,  
Chinese Academy of Sciences 

mli@hccl.ioa.ac.cn 
 

 
Jian Liu 

Institute of Acoustics,  
Chinese Academy of Sciences 

jliu@hccl.ioa.ac.cn 

Abstract 
This abstract describes a submission of the ThinkIT 
Speech Lab at Institute of Acoustics, Chinese Academy of 
Sciences to the onset detection contest of the Music 
Information Retrieval Evaluation eXchange (MIREX) 
2006. This submission presents an algorithm using spectral 
flux to detect musical onsets. Firstly, a detection function 
is generated via spectral flux. Then, a peak picking 
procedure is applied on this function to extract the onset 
points. Finally, the evaluation result of the submitted 
algorithm is presented with discussion and analysis. 

Keywords: MIREX, onset detection, spectral flux 

1. System Overview 
The submitted onset detection algorithm mainly uses the 
spectral flux [1] to generate detection function for 
measuring the musical onset regions, followed by a peak 
picking procedure to extract the onset points in the audio 
stream.  
 

 
     The detection function is generated via the flux of 
spectral energy, the main steps include (1) FFTs based on 
time sequence to build a spectrogram for the input audio, 
(2) low pass filtering, µ-law compression, Canny-operator 
based differentiating and half-wave-rectification for each 

frequency channel of the spectrogram, (3) summating all 
frequency channels together to form the detection function. 
The information of spectral phase is ignored due to the tiny 
contribution to the overall performance.  
 

      
     The peak picking procedure is mainly achieved by 
thresholding, the main steps include (1) picking up all 
local maxima, (2) computing threshold based on the 
standard deviation of the detection function, (3) picking up 
all the local maxima which are beyond the threshold, (4) 
merging the onset points which are too close to each other. 
All the surviving onset points make up of the final result.  

2. Description of Algorithm 
The components of the presented algorithm are described 
detailedly in this section. Firstly, the components used in 
generating the detection function are introduced, and then 
all the arts utilized in the peak picking procedure to extract 
onset points are presented. The input audio stream is 
down-sampled into 16 kHz with uniform format of 16 bits, 
mono channel.  

2.1 Generating detection function 
Firstly, a computation of spectrogram is achieved by 
applying FFT on each frame of the audio stream. The 
frame length is 16ms, and the FFT size is set as 512 which 
is a double size of the frame length to promote the spectral 
resolution. Further processing is applied on each frequency 
channel of the spectrogram, which is represented as a 
function of spectral energy at a certain FFT bin with 
respect to time. After each frequency channel being 
processed, all channels are integrated together to form the 
detection function. Below are the detailed processes 
applied in each frequency channel. Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. 
© 2006 University of Victoria 

2.1.1 Low pass filtering 
A low pass filtering operation is first applied on each 
frequency channel to extract the spectral energy envelope. 
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This procedure is achieved by convolving the frequency 
channel function with a Half-Hanning window [2, 4] 
which has a low-pass characteristic. The length of the 
Half-Hanning window is set as 50ms in our algorithm.  

2.1.2 µ-law compression 
After low pass filtering, a µ-law compression [3] is applied 
on each filtered channel to achieve a non-linear 
compression effect. This procedure together with the 
following differentiating procedure is a psycho-acoustic 
relevant process that can catch a tiny but perceptible 
spectral energy change more precisely. The compression 
factor µ which determines the degree of compression is set 
as 100 in our algorithm.  

2.1.3 Differentiating 
After µ-law compression, a differentiating procedure is 
applied on each filtered and compressed channel to 
transform the sudden rises of spectral energy into narrow 
peaks. The differentiating is achieved by using Canny-
operator which is widely used in image processing [4]. The 
σ, which controls the shape of the operator, is set as 1 in 
our algorithm. 

2.1.4 Half-wave rectification (HWR) 
In a similar way, after differentiating, there will be 
negative peaks exhibited in each channel when the spectral 
energy drops, marked as an offset. Since we are only 
interested in onsets, a half-wave rectification (HWR) is 
applied to only preserve the positive peaks in each 
channel. 

2.2 Extracting onset points 
When the detection function is generated, a peak picking 
procedure is applied on this function to search out all the 
onset points. Below are the detailed steps. 

2.2.1 Local maxima searching 
Local peaks’ positions and heights are detected in the 
detection function with a running window method: local 
maxima are detected at the indexes whose values are 
higher than those of their neighbours within 25ms. 

2.2.2 Thresholding 
The threshold is computed as the product of an adjustable 
coefficient and the standard deviation of the detection 
function, whose value is computed only based on the non- 
zero values in the function. Then all the local maxima 
beyond the threshold are picked as onset candidates. 

2.2.3 Candidates merging 
The minimum duration between every two reasonable 
onsets is set as 100ms. Therefore, all the candidate points, 
which are too close to each other, are merged together by 
preserving the one with greater magnitude and deleting the 

weaker one. All the surviving onset points make up of the 
final result. 

3. Implementation 
The implementation of this algorithm is achieved by C++ 
and built in Win32 environment with Intel C++ Complier 
9.0. The implementation consists of a front-end utilizing 
the program of “sox” [5] to achieve resample for the input 
audio steam, whose format is required to be the Windows 
PCM with WAV header. 

4. Evaluation Result 
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A. Röbel
IRCAM-CNRS –STMS

1, pl Igor-Stravinsky
75004 Paris, France

axel.roebel(at)ircam.fr

Abstract
The article describes an onset detection algorithm that is
based on a classification of spectral peaks into transient and
non-transient peaks and a statistical model of the classifica-
tion results to prevent detection of random transient peaks
due to noise. This article describes the algorithmic changes
compared to last years submission and discusses the conclu-
sions drawn from the evaluation results.

Keywords: Onset detection. Peak classification.

1. INTRODUCTION
In the following article we are going to describe a transient
detection algorithm that has been developed for a special
application, the detection of transients to prevent transfor-
mation artifacts in phase vocoder based (real time) signal
transformations [6, 7]. This application requires a number
of special features that distinguishes the proposed algorithm
from general case onset detection algorithms: The detection
delay should be as short as possible, frequency resolution
should be high such that it becomes possible to distinguish
spectral peaks that are related to transient and non transient
signal components, for proper phase reinitialization the on-
set detector needs to provide a precise estimate of the loca-
tion of the steepest ascend of the energy of the attack. In
contrast to this constraints the application does not require
the detection of soft onsets, where a soft onset is character-
ized by time constants equal to or above the length of the
analysis window. This is due to the fact that such onsets
are sufficiently well treated by the standard phase vocoder
algorithm. False positive detections are not very problem-
atic as long as they appear in noisy time frequency regions.
A major distinction is that a single onset may be (and very
often is) composed of multiple transient parts, related either
to a slight desynchronization of polyphonic onsets or due to
sound made during the preparation of the sound (gliding fin-
gers on a string). While these desynchronized transients are

Permission to make digital or hard copies of all or part of this work for
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are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
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generally not considered as independent onsets they never-
theless constitute transients which should be detected for the
intended application.

The evaluation of the transient detection algorithm for
onset detection and music segmentation tasks has revealed
that the detection results are comparable with existing algo-
rithms for onset detection or signal segmentation tasks [8].
Therefore, it is now the major means for signal segmentation
and onset detection in IRCAM’s AudioSculpt application
[1]. Since MIREX 2005 a number of improvements have
been added which should improve the performance with re-
spect to onset detection and which we are interested to eval-
uate on the MIREX database.

In the following article we will describe the algorithm
only briefly, and we refer the reader to the article published
during MIREX 2005 [8]. Besides that we will discuss the
improvements of the original algorithm since MIREX 2005.

2. Fundamental Strategy
There exist many approaches to detect attack transients. For
a number of current approaches see [2, 5, 4, 9]. In contrast
to the evaluation of energy evolution in integral frequency
bands, a criterion that most of the approaches are relying
on, the following article proposes a two stage strategy which
first classifies the spectral peaks in a standard DFT spectrum
into peaks that potentially may be part of an attack transient
and those that are not. Based on this classification a statisti-
cal model of background transient peak activity is employed
to detect transient events. The advantage of this two stage
approach is that the transient components of the signal are
classified with rather high frequency resolution, allowing a
precise distinction between transient and non transient sig-
nal components.

The basic idea of the proposed transient detection scheme
is straightforward. A peak is detected as potentially tran-
sient whenever the center of gravity (COG) of the time do-
main energy of the signal related to this peak is at the far
right side of the center of the signal window. Note, that it
can be shown [8] that the COG of the energy of the time
signal and the normalized energy slope are two quantities
with qualitatively similar evolution and, therefore, the use
of the COG of the energy for transient detection instead of
the energy evolution appears to be of minor importance.
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3. From transient peaks to onsets
Unfortunately not every spectral peak detected as transient
indicates the existence of an onset. Further inspection re-
veals that spectral peaks related to noise signals quite often
have a COG far of the center of the window. In contrast to
spectral peaks related to signal onsets these false transient
peaks in noise are not synchronized in time with respect to
each other. The synchronization of a sufficient number of
transient peaks is the final means to avoid detection of noise
peaks as onsets.

3.1. Transient energy ratio
Last years MIREX has shown that the normalized energy
variation of the transient events is a further means to effec-
tively distinguish random transient events from onsets.

As normalized energy variation (NEV) we define the max-
imum of the ratio between total signal energy in a transient
frame and the transient energy in the same frame, where the
maximization is done over the whole duration of the onset.
As defined the NEV is bound between 0 and 1. In practical
applications the NEV threshold is adapted interactively by
the user who can adapt the threshold with direct feedback
about the transients that persist. For this years evaluation
we used the NEV as control parameter that will be changed
for the different runs of the algorithm to create the preci-
sion/recall performance curves. We select the NEV thresh-
old to cover the range NEV = [0− 0.36].

For last years evaluation the NEV was selected to be
NEV= 0.35. Note, however, that due to the changes of the
other parameter settings and the statistical model that was
used, the NEV thresholds are not directly comparable.

4. Algorithmic improvements
4.1. Evaluation time grid
A detailed inspection of the algorithm has shown that tran-
sient conditions in the statistical model may be limited to
only very short time ranges. This is especially true for weak
onsets or onsets that appear within a large amount of back-
ground noise. An improvement can be easily obtained by
means of decreasing the inter frame offset of the analysis
frames of the underlying STFT. Compared to MIREX 2005
the frame step has been reduced from an 8th part of the win-
dow to an 24th part of the analysis window.

4.2. Limit onset time distance
The results of last years MIREX have shown that one of
the major problems of the algorithm are double detections
that may occur if multiple instruments have onsets with only
slight delays. It is generally desirable to have a means to
control the time density of onsets. Accordingly, the algo-
rithm has been changed to allow the user to control the re-
quired distance between two detected onsets. If there is
more than a single transient event that occurs in the allowed
time distance then only the strongest one will be output. The

strength of the transients are evaluated according to the NEV
criterion described above.

4.3. Transient peak detection
The transient peak detector described in last years MIREX
uses the center of gravity (COG) of the energy related to a
single peak to determine whether the peak is part of a tran-
sient. As explained above, the peak is classified as transient,
if the COG is sufficiently to the right of the center. Obvi-
ously, for a real transient peak, the signal duration should
at the same time be shorter than the duration of the analysis
window. Especially for noise peaks it sometimes happens,
that the COG is far to the right and the duration is large.
This cannot happen in reality because it would indicate that
the signal related to the peak would extend outside of the
analysis window.

Because the analysis window is fixed, the only way to
explain this situation is by means of cancellation. If the part
of the signal that lies outside of the analysis window is can-
celed by other peaks the overall signal stays within the anal-
ysis window. This cancellation does happen especially for
noise peaks. To detect these transient peak artifacts and to
prevent an impact on the transient detector a new mode of
the transient peak detector has been developed. This mode
requires a transient peak to have an COG offset that is above
the user defined COG threshold, and at the same time re-
quires the duration of the signal related to the peak to be
smaller then the duration of the analysis window. This mode
is enabled in submission 3 of the onset detector algorithm.
Note, that the time duration of the signal related to the peak
can be calculated directly from the peak spectrum [3].

4.4. Statistical model
The detection of an onset event requires that a sufficient
number of synchronized transient peaks are detected. To es-
tablish a reasonable condition for the sufficient number we
rely on a statistical model of the transient background activ-
ity that is due simply to random transient events in the back-
ground noise. The background activity is derived by means
of a short time history of the detected transient peaks. The
history is calculated independently for overlapping bands
covering a time range of approximately the 3/4 of the analy-
sis window. For each band the relative number of observed
peaks that exceeded the transient threshold is used to deter-
mine the average transient probability in the frame history,
which in turn is compared to the transient peak probability
in the future time range covering approximately 1/4 of the
analysis window.

The exact statistical model that is used to describe the
transient peak events has been described in [8] and will not
repeated here. We address here, the problem of the selection
of the bands that are used to monitor the transient events. In
the previous version of the algorithm a fixed size band has
been used, the bandwidth of which was a priori given by the
user. The major problem with the fixed bandwidth of the
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Subm. Id M [ms] K G NE H[kHz] A[dB] T [ms] Duration filter
1 36.3 1.7 2.6 15 10 -46 50 off
2 45.4 2.0 2.4 14 11 -46 50 off
3 45.4 1.9 2.4 14 10.5 -46 50 on

Table 1. Parameter settings of the three different submissions to the MIREX 2006 onset detection evaluation. M window size, K
COG threshold factor, G transient confidence threshold, NE minimum bandwidth of statistical model, H upper frequency limit of
the spectrum to be used in the detector, A minimum amplitude level of a transient, T minimum distance between two onsets.

statistical model is the fact, that onset events may produce
transient peak events with a large scale of different band-
widths. If the bandwidth of the statistical model is much
smaller than the bandwidth of the event, the confidence cal-
culated from the model is too small. However, if the band-
width of the model is much larger than the bandwidth of the
event we may not detect a narrowband transient event due to
the fact that the variation compared to the background tran-
sient activity is too small. To resolve this problem the cur-
rent version of the algorithm uses a statistical model with
different bandwidths. The smallest possible bandwidth is
given by the user and the algorithm uses the given band-
width and all integer multiples of this bandwidths to monitor
the background probability. Due to the fact that the models
for the larger bandwidths can be calculated from the narrow
bands, the calculation of the hierarchic models does not re-
quire a significant computational cost. However, it allows
us to select the confidence threshold with respect to the op-
timal bandwidth such that the setup of the threshold is less
signal dependent.

5. Parameter selection
There remain a number of user selectable parameters for the
transient detector. The first one is the analysis window size
M . With respect to this parameter there exist contradict-
ing demands because on one hand attack transients of sinu-
soids that mix with stationary sinusoids will not be correctly
detected such that frequency resolution should be high and
window size large. On the other hand we can not detect
more than one attack transient within a single window such
that window size should be small. This is a variant of the
well known time resolution/frequency resolution trade off
for time frequency analysis.

The second parameter is the COG threshold. A simple
theoretical investigation shows that for the noise free case
the maximum COG normalized by the analysis window is
0.5 and for maximum robustness Cs should be close to this
value. Due to background noise or preceding notes, how-
ever, part of the transient may be covered such that the max-
imum value of the observed COG will generally be lower
than 0.5. As limiting case for a transient condition we con-
sider a linear ramp that start at the very left end of the anal-
ysis window. Signals with COG smaller than this will not
be detected. The parameter K is a multiplying factor of the

COG of the linear ramp and it is used to control the COG
threshold. The smaller K the more sensitive the detector is
but at the same time the more random transient peaks may
be detected in noise.

The third parameter is the confidence threshold G that
is the confidence of the statistical model that the transient
probability did change. The lower the confidence threshold
the more sensitive the algorithm will be, again running the
risk of false detections in noise.

The fourth parameter is the minimum bandwidth of the
frequency bands that are used to obtain the statistical model
for background transient activity. As explained in section 4.4
the statistical model will monitor the transient probability in
a hierarchical manner. Therefore, the bandwidth parameter
is not as important as in the previous version. The band-
width NE is specified in terms of the mainlobe width of the
analysis window.

The fifth parameter is the highest frequency H that will
possibly be included in the transient peak detection pro-
cess. The sixth parameter, the minimum distance between
detected transients T , has been discussed in section 4.2. As
last parameter we consider the minimum amplitude an onset
needs to have to be accepted as onset event. This minimum
amplitude A is expressed in terms of the full scale amplitude
of the signal.

The parameters have been optimized using a set of hand
labeled sound files containing mostly sharp attacks related
to drum, bars, or plucked string onsets. Three sets of pa-
rameters have been selected to be part of the MIREX evalu-
ation. The parameter settings used in the MIREX evaluation
are given in table (4.3).

6. Discussion of the results
While we are happy to see that our algorithm did compare
rather favorable with the other contributions, we don’t be-
lieve that the evaluation can be used to compare the different
algorithms.

The main problem is the fact that all algorithms have
been trained and adapted using different data sets. There-
fore, it appears questionable to draw any conclusions with
respect to the ranking of the algorithms. The analysis of the
different sound classes reveals that for the different classes
different algorithms are “winners”. This could be related
to the fact that one algorithm is better, or it could be re-
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lated to the fact that the algorithm has been trained with a
training set that contained more examples for that class. As
mentioned above our algorithm has been adapted using es-
pecially drums, plucked strings, bells and the like. Accord-
ingly the algorithm should work best with these examples
- which is the case. For all these classes the algorithm is
rather successful. As a surprise we note that the algorithm
works rather successfully well for the singing voice.

Therefore, in the following I will discuss only the ranking
of the three versions of our algorithm and the version we
send last year.

The first thing to remark is that the recall rate was rather
low in all but the bars and bells classes. This indicates that
the filtering due to the COG threshold and the confidence
level was to strong for some of the data classes. Accord-
ingly, even for a minimum value of the normalized transient
energy threshold not all transients passed. This may be due
to the fact that our training data base does not contain any
sustained strings or wind instruments. We hope to be able to
extend the training database to try adapting to a larger scope
of sound classes for next years MIREX.

As a second point we note, that the duration filter used
in submission three of the algorithm did not always improve
the results. The filtering seems to have created an advantage
especially for the wind instruments, which may be related
to the blowing noise.

As a last remark we mention that the shorter window
length of submission 1 seems to be appropriate especially
for the voice example. We can only conjecture the reason
for this fact. It may be related to vibrato in the singing voice.

Comparing the algorithm with last years version we find
that the new versions are better for nearly all classes. Ex-
ceptions are the wind and the brass instruments for which
the average F-measure have slightly lowered. This result is
disturbing especially due to the fact that last years version
had a fixed parameter set.

7. Acknowledgments
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ABSTRACT

Nowadays, the problem of estimating the tempo of au-
dio recordings receives a large amount of attention from
the automatic audio processing community. Applications
for this task include automatic playlist generation, syn-
chronization of audio tracks, computer based music tran-
scription, music information retrieval... This paper briefly
presents a technique for estimating and tracking the tempo
of audio recordings. This approach relies on a front end
that estimates phenomenal accents (onsets) and their re-
spective time location. The second step consists in a peri-
odicity detection block that calculates the beat rate of the
audio signal and it is followed by a dynamic programming
stage that performs tempo tracking. This

Keywords: energy flux, phenomenal accents, dynamic
programming.

1 Description of the first algorithm

This year we submit two algorithms. The first one cor-
responds to the same proposal submitted last year for
Mirex’05 with some minor modifications. In addition, we
also submit another algorithm based on a similar princi-
ple, but using more recent versions of the corresponding
system components.

It is assumed that the beat of the audio signal is rela-
tively constant, at least during the duration of the tempo
analysis window.

The system that we proposed can be divided into four
major steps:

• phenomenal accent detection: also called onset de-
tection, refers to locating discrete temporal events in
an audio stream where there is a marked change in
any of the perceived psychoacoustical properties of
sound: loudness, timbre and pitch (Lerdahl and Jack-
endoff, 1983);

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

• periodicity estimation: consists in detecting the rate
at which phenomenal accents appear;

• periodicity tracking: this part is carried out by a
dynamic programming algorithm that finds the best
periodicity path through succesive tempo analysis
frames;

• Path selection and tempo salience estimation: this
module selects the two main tempi from the various
periodicity paths found by the tracking algorithm,
then it estimates the relative salience of the lower
tempo.

The general overview of the system is presented in
Figure 1. The algorithm works as follows: the input sig-
nal is resampled at a lower frequency (fs = 22, 050 Hz)
to obtain x(n). This is done in order to reduce the compu-
tational burden, knowing that the rhythmic properties of
the original audio remain unaltered. Next, x(n) is decom-
posed into eight-uniform non-overlapping subbands using
a maximally decimated polyphase filter bank.

A musical stress profile indicating the potential lo-
cation of phenomenal accents is computed for each sub-
band signal. This was done using the system presented
in (Alonso et al., 2005), where a perceptually plausible
power envelope is calculated. Then its derivative is com-
puted using an efficient differentiator filter and a detection
function that bears onsets as peaks is obtained.

The periodicity of the detection function is obtained
using three methods widely employed in pitch estima-
tion: the summary autocorrelation function, the spectral
sum and the spectral product. The procedure followed
is explained in (Alonso et al., 2004). After processing
each tempo analysis window, the output of every method
is stored in its respective time–frequency matrix. Then,
a dynamic programming algorithm is used to determine
and track the optimum paths of tempo candidates in each
analysis frame. For the Mirex contest, to compute the
tempo (T) of the excerpt under analysis, the optimum
paths found by every periodicity method are first time-
averaged followed by an inter-algorithm average.

In the last part, the two main tempi are selected from
the set of paths computed by the tracking algorithm. The
selection criteria combines path energy (salience) and a
priori information about the human preferences concern-
ing the beat period as suggested by Moelants (2002) and
McKinney and Moelants (2004).

Music Information Retrieval Evaluation eXchange - MIREX 2006

72



x  (n)0 x     (n)P−1

programming
dynamic

x(n)audio signal

.   .   .
0 P−1H  (z) H     (z)

.   .   .

.   .   .

Σ

selection
path

T1, T2 and ST1

estimation
periodicity

estimation
periodicity

extraction

phenomenal

extraction

phenomenal
accentsaccents

Figure 1: Overview of the system.

2 Description of the second algorithm

This approach bears close resemblance to the algorithm
described above. In this variant, the musical stress esti-
mation block has been improved. Instead of computing
the traditional spectrogram, this variant uses a reassigned
version to enhance simultaneously the resolution in time
and frequency.

This algorithm uses only the spectral sum for period-
icity estimation, instead of the three technies used in the
previous approach. Additionally, the periodicity tracking
block has also been upgraded to improve its robustness to
tempo variations. Finally, the tempi selection block uses
a slightly different scheme for the selection of periodicity
paths since only period estimations from one are available.
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Abstract
This paper presents a tempo extraction algorithm for raw,
polyphonic audio recordings, assuming that music meter and
tempo remain constant throughout the recording. The method
was submitted at MIREX 2006, in the context of the Audio
Tempo Extraction evaluation task. Our approach is based on
the self-similarity analysis of the audio recording and does
not assume the presence of percussive instruments. In order
to account for the contest’s requirements, which emphasizes
on perceptual tempo tracking, the proposed method returns
two tempi, ranging from 40bpm to 320bpm, along with their
relative strength.

Keywords: Tempo Extraction, Self Similarity Analysis

1. Description of the Algorithm
1.1. Feature Extraction

The proposed algorithm is a variant of previously published
work by the authors ([1]). At a first step, each raw audio
recording is divided into overlapping long-term segments,
each of which has a duration equal to6 seconds (long-term
step has been set equal to0.5 seconds). For each long-term
segment, a short-term moving window generates a sequence
of feature vectors. Approximate values for the length of
the short term window and overlap between successive win-
dows are100ms and95ms respectively. The adopted feature
is similar with the standard MFCCs, however the filter bank
consists of overlapping triangular filters, whose center fre-
quencies align with the chromatic scale of tones (starting
from 110Hz and reaching up to approximately7KHz).

LetF = {f1, f2, . . . , fN}, be the feature sequence that is
extracted from a long-term segment. Sequence F serves as
the basis to calculate the Self Similarity Matrix (SSM) of the
segment, using the Euclidean function as a distance metric.
Since the SSM is symmetric around the main diagonal, in
the sequel it suffices to focus on its lower triangle.

At a next step, the mean value of each diagonal of the
SSM is calculated. IfBk stands for the mean value of the
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kth diagonal, then:

Bk =
1

N − k

N
∑

l=k

||fl, fl−k||

whereN − k is the length of thek-th diagonal and||.|| is
the Euclidean distance function. In the sequel, we will refer
to the k-th diagonal as thek-th lag. If B is treated as a
function of k, then its plot againstk exhibits certain local
minima (valleys) for a number ofks. Each valley can be
interpreted as corresponding to a periodicity, that is inherent
in the long-term segment being examined. In addition, the
difference of lags between any two valleys can also reveal
inherent periodicities.

1.2. Tempo Estimation
Our method is based on the assumption that the perceived
tempi correspond to periodicities that appear as valleys of
B. In order to extract a pair of dominant periodicities (i.e.,
two perceived tempi), each long-term segment is processed
as follows:

1. All “dominant” valleys ofB are detected. A valley is
considered to be “dominant” if it is the deepest one in
a neighborhood of lags. The width of the neighbor-
hood is a predefined constant. The lags of detected
valleys are sorted in ascending order and the differ-
ence of lags between successive valleys is calculated.
All differences are placed in a histogram. This his-
togram exhibits peaks at certain values.

2. In the sequel, the width of the neighborhood for cal-
culating dominance is increased and all dominant val-
leys are again detected for this new width. The differ-
ences of lags of detected valleys are placed in a new
histogram.

3. The peaks of the above two histograms are then de-
tected and all possible pairs of lags corresponding to
these peaks are formed. The ratio of lags in each pair
is then examined in order to decide whether it approx-
imates sufficiently one of the following music meter
ratios, namely:{ 3

8
, 4

8
, 5

8
, 6

8
, 7

8
, 8

8
, 9

8
}, or { 2

4
, 3

4
, 4

4
, 5

4
},

depending on the value of the lag of the first compo-
nent of the pair under consideration. The best pair
is selected by also taking into account the height of
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peaks corresponding to the lags of the pair in the re-
spective histograms.

The above procedure yields one pair of lags per long-term
segment. At a final stage the lags appearing in all winner-
pairs are again placed in a histogram. This last histogram
exhibits certain peaks. These peaks are examined in pairs
and the procedure of step 3 is repeated to yield a winning
pair. The two lags of this pair are returned by the algorithm
as the two most dominant periodicities (perceived tempi).

The proposed method took the 6th place in the MIREX-
2006 tempo extraction contest. The performance of the al-
gorithm is summarized in Table 1. The method was imple-
mented in Matlab (v7.0) and was cross-compiled to generate
the submitted executable.

At least one tempo Both tempi P-score
correct correct
84.29% 47.86% 0.669

(5th place) (3d place) (6th place)

Table 1. Performance of the proposed method
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Abstract
This paper describes an audio tempo extraction algorithm
submitted to the MIREX 2006 contest. The algorithm is
identical to the one submitted to MIREX contest in 2004,
and has been described in detail in the article “Analysis of
the Meter of Acoustic Musical Signals” published in IEEE
Trans. Audio, Speech and Language Processing, 14(1), 2006.
In summary, the method analyses musical meter jointly at
three time scales, of which only the tactus (beat) level is
used here. The output tempo is obtained as the median inter-
beat-interval during the latter half of the analysed signal.

Keywords: Tempo estimation, musical meter analysis, beat
tracking.

1. Introduction
The tempo extraction algorithm described here is identical
to that submitted to MIREX contest in 2004. It is based on
the meter analysis method originally described in [1].1

The employed algorithm estimates only one tempo value
for the analysed signal. This is calculated as a median of
the inter-beat-intervals during the latter half of the analysed
signal. In order to conform to the task description in MIREX
2006 contest, another tempo value is obtained by doubling
or halving the first estimate towards the mean tempo of 109
beats per minute (BPM). The latter estimate is assigned a
small weight value.

2. The underlying meter analysis algorithm
The aim of the method proposed in [1] is to estimate the
meter of acoustic musical signals at three levels: at the tac-
tus, tatum, and measure-pulse levels. An overview of the
method is shown in Fig. 1.

For the time-frequency analysis part, a technique is em-
ployed which aims at measuring the degree of spectral change,
or, “accent” in music signals. In brief, preliminary time-
frequency analysis is conducted using a quite large number
of subbands and by measuring the degree of spectral change

1 Available at www.cs.tut.fi/sgn/arg/klap/sapmeter.pdf.
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Figure 1. Overview of the meter analysis method, on which the
tempo extraction algorithm is based.

at these channels. Then, adjacent bands are combined to ar-
rive at four bandwise accent signals, for which periodicity
analysis is carried out.

Periodicity analysis of the bandwise accent signals is per-
formed using a bank of comb filter resonators very similar
to those used by Scheirer in [2]. Before we ended up us-
ing comb filters, four different period estimation algorithms
were evaluated. A bank of comb filter resonators was cho-
sen because it was the least complex among the three best-
performing algorithms.

The comb filters serve as feature extractors for two prob-
abilistic models. One model is used to estimate the period-
lengths of metrical pulses at different levels. The other model
is used to estimate the corresponding phases (see Fig. 1).
The probabilistic models encode prior musical knowledge
regarding well-formed musical meters. In brief, the models
take into account the dependencies between different pulse
levels (tatum, tactus, and measure) and, additionally, imple-
ment temporal tying between successive meter estimates.
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Abstract 
This extended abstract describes a submission to the 
QBSH (Query by Singing/Humming) task of MIREX 
(Music Information Retrieval Evaluation eXchange) 2006. 
The methods used for both subtasks 1 and 2 are introduced 
together with the evaluation results Comments and 
suggestions for further QBSH task are also addressed in 
the paper. 

Keywords: MIREX, Query by Singing/Humming (QBSH), 
LS (Linear Scaling), DTW (Dynamic Time Warping). 

1. Overview of QBSH Task 
The goal of QBSH (Query by Singing/Humming) task 

at MIREX 2006 is to evaluate MIR systems that take sung 
or hummed query input from real-world users. QBSH task 
consists of two subtasks: 
 

 Subtask 1: Known-Item Retrieval 
 Input: 2797 sung/hummed queries of 8 

seconds. 
 Test database: 48 ground-truth MIDIs + 2000 

Essen Collection MIDI noise files. 
 Evaluation: Mean reciprocal rank (MRR) of 

the ground truth computed over the top-20 
returns. 

 Subtask 2: Queries as Variations 
 Input: 2797 sung/hummed queries + 48 

ground-truth files of 8 seconds 
 Test database: 48 ground-truth MIDIs + 2000 

Essen MIDI noise files + 2797 sung/hummed 
queries. 

 Evaluation: The precision based on the 
number of songs within the same ground-truth 
class of the query calculated from the top-20 
returns for each of the 2845 queries. 

2. QBSH Corpus 
The QBSH corpus provided by Roger Jang [1] consists 

of recordings of children’s songs from students taking the 
course “Audio Signal Processing and Recognition” over 
the past 4 years at CS Dept of Tsing Hua Univ., Taiwan. 
The corpus consists of two parts: 

 

1. MIDI files: 48 monophonic MIDI files of ground 
truth. 

2. WAV files: 2797 singing/humming clips from 118 
subjects, with sampling rate of 8 KHz and bit 
resolution of 8 bits. 

 
For each of the WAV file, the corpus provides another 

two files distinguished by their file extensions, including 
PV (files of pitch vectors, derived with a frame size of 256 
and zero overlap), and MID (midi files). PV files are pitch 
vectors labelled manually by the student who recorded the 
clip. MIDI files were generated from the PV files through 
a simple note segmentation algorithm. The participants 
may choose any one of the formats as the input to their 
systems. 

The recording count of each MIDI file is shown in 
Figure 1. 

 
Figure 1. Recording count of each MIDI file. 

 

3. Our Approaches 
Since all the query data are available, we have to choose 

a simple but effective distance measure, which do not run 
into the potential problem of over fitting/training. Under 
this guideline, our primary candidates are 

 
 DTW: Dynamic Time Warping [2, 3] 
 LS: Linear Scaling [4] 
 LS+DTW: LS plus DTW [5] 

Music Information Retrieval Evaluation eXchange - MIREX 2006

77



 
Then we need to decide which files to be used as the 

input to our system. Apparently, WAV and PV should be 
better ones since MID is derived from PV. In order to 
decide to use WAV or PV, we performed an evaluation 
similar to subtask 1, where 2000 MIDIs are selected from 
the Internet as a replacement for Essen Collection. When 
WAV files are used, we employed a robust pitch tracking 
algorithm based on dynamic programming to extract the 
pitch vectors. The result is shown in Figure 2. 
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Figure 2. MMR vs. computation time for several methods 

on PV and WAV files. 
 
Our evaluation demonstrates that PV can always 

achieve better performance than WAV, as shown in Figure 
2, since PV files contain pitch vectors labelled manually. 
In fact, we still found some mistakes in PV, which should 
be corrected later in order to make the QBSH corpus more 
trustworthy. The performance on WAV files is not as good, 
primarily due to the fact that the WAV files are recorded 
by 126 subjects at different PCs with different microphone 
setups, hence it is hard to do both endpoint detection and 
pitch tracking accurately. 

We did not try MID files as the query set since our 
algorithm is based on pitch vectors (frame-based) instead 
of music notes. 

Since computation time is not really an issue in this task, 
we used only DTW and LS in our evaluation. Based on the 
evaluation criteria for both subtasks, we found that LS is 
the best method for subtask 1 and DTW is the best method 
for subtask 2. 

4. Results 

Out simple distance measures do prove to be effective in 
both subtasks. In subtask 1, an MRR (mean reciprocal rank) 
of 0.883 is achieved, ranked 3 among 13 participants. For 
subtask 2, an MP (mean precision) of 0.926 is achieved, 
ranked 1 among 10 participants. Figure 3 demonstrates the 
evaluation results for both subtasks. 

AU1 AU2 CS1 CS2 CS3 FH NM RJ RL RT1 RT2 XW1 XW2
0

0.2

0.4

0.6

0.8

1

0.205
0.288

0.568

0.283
0.348

0.218

0.688

0.883
0.8

0.196

0.39

0.926 0.9

M
ea

n 
re

ci
pr

oc
al

 r
an

k

Subtask 1: Known−Item Retrieval

AU1 AU2 CS1 CS2 CS3 FH NM RJ RT1 RT2
0

0.2

0.4

0.6

0.8

1

0.163
0.238

0.587
0.649

0.415

0.309

0.722

0.926

0.468
0.401

M
ea

n 
pr

ec
is

io
n

Subtask 2: Queries as Variations

 
Figure 3. Evaluation results of two subtasks of QBSH 

 

5. Comments on QBSH Task 
For a comprehensive evaluation of QBSH in the coming 

year, we have several comments/suggestions: 
 

Preparation of a test set 
Ideally, the test set should not be accessible to any 

participant beforehand. One way to achieve this is to 
require every participant to submit a set of recordings to 
IMIRSEL team to be used as the test set. The test set 
should be released after the evaluation results are 
publicized. By following this convention, we should be 
able to increase our QBSH corpus year by year and new 
effective methods can be identified accordingly. 
 
More participation 

For this year, we have only 13 participants for subtask 1, 
10 participants for subtask 2. We should try to encourage 
more participants since there are much more people 
working on QBSH. 

 
Variations of QBSH Task 
1. Use WAV exclusively as the query input: This is 

closer to the real-world situation where a QBSH 
system has to deal with acoustic input to pitch vector 
conversion using a pitch tracking algorithm. 

2. Use MP3 as the test database: This is far more 
practical then using monophonic MIDIs as the test 
database. Of course, this is also far more challenging 
since audio melody extraction is well-known as a 
tough task in MIREX. 
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Abstract
This extended abstract details a submission to the Music In-

formation Retrieval Evaluation eXchange in the Query by

Singing/Humming task. The problem of query by singing

consists of building a machine capable of simulating the

cognitive process of identifying a musical piece from a few

sung notes of its melody. In this work, the algorithms of

pitch tracking, onset detection and melody matching used in

the system Tararira [1] are briefly described. Much effort

has been put on automatic transcription of singing voice as

it is a key factor in the overall performance. A novel way of

combining note by note matching with the approach based

on pitch time series matching is introduced.

Keywords: QBH, MIREX, melody matching.

1. Introduction

Through the last decade, different approaches to face the

query by singing problem were considered. In all the pro-

posals, the database consist of music in symbolic notation,

generally MIDI, instead of raw or compressed audio as there

is no sufficiently robust automatic way to extract the melody

directly from a recording to compare it with the query.

The systems proposed can be divided, from its repre-

sentation and matching technique, basically into two ap-

proaches. The traditional approach is based on note by note

comparison [2][3], whereas a more recent approach utilizes

the comparison of fundamental frequency time series [4][5].

The first approach consist of transcribing the voice signal

into a sequence of notes and searching for the best occur-

rences of this pattern on database of melodies. Due to the

performance decrease produced by transcription errors, the

other approach avoids the automatic transcription, compar-

ing melodies as fundamental frequency time series. Unfor-

tunately, this implies working with long sequences (very

long compared to sequences of notes) therefore computa-

tional time becomes prohibitive. Moreover, it is necessary

Work partly supported by Comisión Sectorial de Investigación

Cientı́fica (CSIC).

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page.

c© 2006 University of Victoria

to require the user to sing a previously defined melody frag-

ment [4][5].

In the system Tararira [1] a novel way of combining both

approaches is introduced, that preserves the advantages of

each of them. Firstly, the system selects a reduced group of

candidates from the database, using note by note matching.

Then, the selection is refined using fundamental frequency

time series comparison.

The system architecture is divided in two main stages,

as depicted in figure 1. The first one is the transcription of

the query into a sequence of notes. In the second one, this

sequence is matched to the melodies stored in the database,

and a list of musical pieces is retrieved, in a similarity order.

The transcription stage involves the following tasks:

• To estimate the fundamental frequency contour to set

the note pitches.

• To segment the audio signal in order to establish the

onset time and duration of notes.

• To perform a melodic analysis to adjust the note pitches

to the equal tempered scale.

The tasks of the matching stage are:

• To codify the note sequence so as to obtain key and

tempo transposition independence in the matching.

• To set flexible similarity rules to take into account

query ornaments or mistakes, and automatic transcrip-

tion errors.

• To refine the candidates selection, avoiding automatic

transcription errors, by comparing fundamental fre-

quency time series.

Melodic Analysis

Pitch Tracking

Voice

Signal

Refinement

Search

Result

Database

Segmentation

Transcription Melody Matching

Codification Matching

Figure 1: Block diagram of the system.
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2. Singing voice transcription

The goal of the automatic transcription is to extract from the

audio signal the sequence of notes that best represents the

sung melody. To do that, the events with greater probability

to correspond to notes are identified. Each event is charac-

terized by three values: pitch, onset time and duration.

In this work, much effort is put on the automatic tran-

scription of the singing voice, as it remains an unsolved

problem. The singing voice is one of the most difficult mu-

sical instruments to deal with.

2.1. Pitch tracking

To establish the notes pitch, the evolution of the fundamen-

tal frequency (F0) of the singing voice must be estimated.

There are very well known techniques to do that. The im-

plemented algorithm utilizes the Difference Function [6], a

variation of the Autocorrelation Function.

2.2. Audio segmentation

The transcription of the query requires to establish each note

onset time and duration. This problem is known as auto-

matic audio segmentation into notes, and is the most diffi-

cult part of the automatic transcription. The singing voice

has a set of features that make the note boundaries diffuse,

and so, hard to identify.

It is possible to distinguish different note onsets in a sing-

ing voice signal. For notes sung with syllables starting with

occlusive phonemes (such as, /ta/), the sudden energy re-

lease produces hard onsets, that are shown as a big signal

energy increments. When a note starts with a gradual en-

ergy increase (for example, a nasal consonant), the onset is

softer and therefore difficult to establish.

The algorithm implemented, in order to get a robust seg-

mentation, looks for signs of events in the amplitude enve-

lope as well as in the fundamental frequency contour. In

the first stage, events corresponding to energy changes are

detected. The algorithm calculates energy envelopes from

different frequency bands [7], as generally the events ap-

pear more clearly in some band than in the envelope of the

signal. The most salient ones are considered genuine note

onsets. On a second stage, the weaker events are validated

if they show a pitch change. Finally evident pitch changes

that do not show an energy increment are identified (e.g.

legato). However, this is not an easy task because the ex-

pressiveness of the performance and the lack of training of

inexperienced singers introduce a set of features in the fre-

quency contour that can be wrongly considered as additional

notes (soft transition, spikes, instabilities, vibrato) [8].

2.3. Adjustment to the equal tempered scale

To assign a pitch value to each note, first of all it is necessary

to approximate the fundamental frequency contour to a sin-

gle frequency value. Then, a note pitch from the equal tem-

pered scale is associated to this frequency value. Singers,

specially untrained ones, are unable to sing according to a

tuning system, so the query does not respect the reference

and intervals of the equal tempered scale. It becomes neces-

sary to adjust the natural deviation between the sung melody

and the equal tempered scale.

The adjusting technique used assumes the hypothesis that

when singing a melody a reference tone is held in mind,

and that tempered note intervals relative to this reference

are sung [8]. The method consists in estimating the ref-

erence tone through the most frequent deviation from the

equal tempered scale, and in this way adjusting the pitch of

the sung notes. Estimating the reference tone through the

most frequent deviation takes into account that besides the

deviation from the absolute equal tempered scale, in some

note intervals an additional error may exist that is related to

the difficulty of singing them.

3. Melody matching

A melody can be identified in spite of being performed at

different pitch and at different tempo. However, some changes

modify the melodic line but still allow the melody to be rec-

ognized, like sporadic pitch and duration errors or expres-

sive features. The independence to the specific pitch and

tempo is carried out in the note’s encoding. By means of

flexible similarity rules in the matching stage it is possibly

to achieve tolerance to modifications due to ornaments or

mistakes of the query, and automatic transcription errors.

In the system developed, a two stage approach is per-

formed: firstly, a small group of candidates is selected based

on notes comparison and then the search is refined using

pitch time series.

3.1. Note sequences matching

Working with note sequences, the melody matching prob-

lem is basically an approximate string matching problem.

Encoding

The pitch transposition invariance is obtained by encod-

ing the pitches sequence A = (a1, a2, . . . , an) as the se-

quence of intervals A = (a2 −a1, a3 −a2, . . . , an −an−1).
It is evident that a sequence A′ transposition of A has the

same interval representation.

Ideally, tempo invariance should be obtained by normal-

izing the notes duration to a tempo invariant reference du-

ration, for example, the duration of a beat, as in written no-

tation. Unfortunately, it is not always possible to automat-

ically estimate the tempo from a sung melody. A simple

substitute for the beat is the duration of the previous event

[9]. Given the duration sequence, D = (d1, d2, . . . , dn), the

tempo invariant representation utilized is the relative dura-

tion sequence D = (d2

d1

, d3

d2

, . . . , dn

dn−1

). This sequence is

quantized to a discrete alphabet. Due to the gross approxi-

mations in duration that are committed when singing care-

lessly, the inter onset interval is used as a more consistent

representation of durations.
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Matching

The matching step consists in finding good occurrences

of the codified query in the database. For this task, the Edit

Distance is calculated using the algorithm called Dynamic

Programming [10], combining duration and pitch informa-

tion. In this combination, pitch is considered more impor-

tant because it is more discriminative than duration. More-

over, duration information is less trustful when singing care-

lessly.

Once all the database elements were compared with the

encoded query, the best occurrences of the pattern are se-

lected according to the Edit Distance (see figure 2).

Figure 2: Transcription of the query (top) and an occur-

rence in the database (bottom).
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Figure 3: The corresponding pitch time series of the query

and the occurrence in figure 2, normalized and aligned by

the system.

3.2. Pitch time series matching

As a way of avoiding the automatic transcription errors, a

recent approach compares the F0 contour of the query with

melodies codified as pitch time series, by means of Local

Dynamic Time Warping (LDTW).

However, this approach has some restrictions. Besides

it high computational cost, an element of the database must

match exactly the query, as it is not possible to search sub-

sequences into sequences providing pitch and tempo invari-

ance [4][5]. For this reason, the database building process

is troublesome, because it is necessary to identify from the

original melody those fragments likely to be sung.

In the note sequence matching stage, fragments similar

to the query are identified in the melodies of the database.

Then pitch time series of this fragments are build and are

compared to the F0 contour of the query (see figure 3). In

this way LDTW is applied to a small group of candidates,

without imposing constrains to the query.

4. Evaluation Task

The system was submitted to the MIREX Evaluation eX-

change in the Query by Singing/Humming Task 1, known

as Known-Item Retrieval. In this task, submitted systems

take a sung query as input and return a list of songs from the

test database. Mean reciprocal rank (MRR) of the ground

truth is calculated over the top 20 returns. The test database

consists of 48 ground-truth MIDIs + 2000 Essen Collec-

tion MIDI noise files. The query database consists of 2797

sung queries. The sung queries were represented by audio

(.wav), pitch vector (.pv) and MIDI (.mid) files transcrib-

ing the pitch vectors. Participants could choose whether to

use the audio, pitch vector or MIDI files for querying. The

system submitted uses the audio queries in .wav format.

4.1. Results

In the table of figure 4 the main results of the MIREX QSBH

Task 1 are presented: Mean Reciprocal Rank, machine type 1

and runtime in seconds. Runtime is specified separately for

the index and query stage or as a unique value representing

both parts. More details of the results are available online 2 .

4.2. Analysis

The submitted system achieved a good performance, placing

4th among 13 evaluated systems. Significance tests show

that the results of the first four algorithms are grouped closely.

The data set used in the evaluation has the remarkable

characteristic that every query starts from the beginning of

the corresponding song. Although this information could be

used as prior knowledge, the submitted system does not take

it into account (to the best of our knowledge at least one of

the three best ranked algorithms do it). The hypothesis of

match from the beginning would increase the performance

of any system, as it reduces false positives. With regards to

the assumption of this hypothesis in a real world system, it

can be claimed that as long as each melody can be cut into

phrases in advance, every query can be considered to match

from the beginning. However, there is no guarantee that an

1 Machine type A is a Dual AMD Opteron 64 1.6GHz, 4GB RAM, Cen-

tOS. Machine type B is an Intel P4 3.0GHz, 3GB RAM, XP.
2 http://www.music-ir.org/mirex2006/index.php/

MIREX2006 Results
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CPU Runtime (s)

Participant MRR type index query

Wu, Li (1) 0.926 B 63 2502

Wu, Li (2) 0.900 B 63 2817

Jang, Lee 0.883 B 25637

López, Rocamora 0.800 A 6 20604

Lemström et al. 0.688 A 8302

Sailer (1) 0.568 A 3 56560

Typke et al. (2) 0.390 A 23442 4629

Sailer (3) 0.348 A 3 4618

Uitdenbogerd (2) 0.288 A 8 140

Sailer (2) 0.283 A 3 608

Ferraro, Hanna 0.218 A 89239

Uitdenbogerd (1) 0.205 A 8 166

Typke et al. (1) 0.196 A 23442 2034

Figure 4: QBSH Task 1 results.

arbitrary query starts at the beginning of a phrase. More-

over, to do this an automatic melody segmentation system

is needed, introducing another source of error. In general,

imposing this kind of constrains to the problem limits the

scope of the system.

Regarding the runtime, although no particular attention

was paid on efficiency, the processing time performed was

reasonable. Further work should consider improving it.

Finally, an interesting conclusion that can be drawn from

the results of this contest is that the state of the art in the

query by humming problem shows that, although being still

an open problem, it is feasible to face real world situations.

Much effort has to be put on automatically building the data-

base. In this sense, results on the MIREX Audio Melody

Extraction Task are promising.
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Abstract
This paper describes the submissions to the MIREX 2006
Query by Singing/Humming task delivered by Fraunhofer
IDMT. The approach presented here is based on extract-
ing the pitch out of monophonic singing (or humming), and
hereafter segmenting and quantising it into a melody com-
posed of discrete notes. Finally this melody is compared to
a database of indexed melodies, using an error tolerant sim-
ilarity search. Two algorithms have been submitted that dif-
fer in the melody extraction method, roughly characterised
by the trade-off between accuracy of transcription (and there-
fore recall) and computing time needed. A third version ac-
cepting queries in midi format has also been submitted.

Keywords: MIREX, Query by Humming, Query by Singing,
similarity search

1. Introduction
The term Query by Singing/Humming usually describes the
retrieval of a musical piece containing a certain melodic
theme by singing or humming the same. Several tasks are
to be solved to tackle this problem: The corpus of melodies
in which the query will be searched has to be acquired, the
singing input has to be processed into a format that can be
handled by the search algorithm, and melodies similar to the
query input have to be spotted in the melody database. The
last step requires a high grade of discrimination whilst be-
ing tolerant against either input errors or errors propagating
from previous processing steps. As this results in many pa-
rameters to be defined in a QBSH evaluation, assessing and
comparing such systems can be a tedious problem.

By presenting a data corpus in a defined format, and set-
ting up two retrieval tasks, the MIREX 2006 QBSH task
presents a frame work allowing comparison of different sys-
tems

2. Implementation Overview
The submission consists of an indexing tool (a), and three
different query tools (b), (c), and (d). The query tools all

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
c© 2006 University of Victoria

use the same melody search algorithm and the same melody
database, but feature different mechanisms to acquire the
melody information to search for. The database is read from
the file created by (a) and stored in the memory. The tools
are able to read the query input as wav, aiff, mp3 or MIDI
files from a given directory, match them against the database
and output a list of the most similar melodies for each query
file.

All algorithms are implemented in C++ and available for
Windows and Linux. Approximate run times1 are shown in
table 1.

3. Indexing
For indexing, monophonic MIDI files are used. They are
read by the indexer (a) and transformed into a database file
that can be accessed by the query tools. This comprises
just a transformation of the midi files into suitable format.
Modification that may happen to the data are the elimina-
tion of polyphony, if overlapping notes lead to MIDI files
that are slightly polyphonic. The behaviour for massively
polyphonic midi files is not defined.

4. Query
The general approach to querying by audio files is extracting
the melody from the audio itself. In this case, discrete note
representation of the melody are extracted, as can for exam-
ple be found in MIDI files. Two different algorithms to ex-
tract melodies are submitted separately. The third submitted
algorithm reads in pre-extracted melodies from monophonic
MIDI files.

In a subsequent step, the extracted melodies are com-
pared to the melodies in the indexed database. The look-up

1 All run times are measured on a 3GHz Intel Pentium IV system.

Table 1. Run times for the different algorithms. N denotes
number of indexed songs,l the length of the query

Algorithm Run Time Scaling
Indexing 1-2s/1000 songs O(N)
DB Look Up 2s/1000 songs O(lN)
Extraction Warp about15 Realtime O(l)
Extraction Ear about1.5− 2 Realtime O(l)
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Table 2. Overview of the results of QBSH task. See text for explanation, entries discussed here in bold.
AU1 AU2 ear midi warp FH NM RJ RL RT1 RT2 XW1 XW2

Task 1 0.205 0.288 0.568 0.283 0.348 0.218 0.688 0.883 0.800 0.196 0.390 0.926 0.900
Task 2 0.163 0.238 0.587 0.649 0.415 0.309 0.722 0.926 n.e. 0.468 0.401 n.e. n.e.

part is exactly the same for all query by singing/humming
variants presented here.

4.1. Melody Extraction using a Physiological Ear Model
The first algorithm uses a physiological ear model to achieve
a transcription that is as close to human hearing as possible.
This yields a very precise melody transcription of mono-
phonic audio, and therefore the best accuracy in querying
that is achievable, but due to its high complexity, computing
time exceeds real time.

The algorithm used here is based on the implementation
of Heinz [1, 2] and has undergone minor modifications for
bug fixes and stability improvement.

4.2. Melody Extraction using a Warped FFT
A second, much faster algorithm uses a warped FFT [3] to
transform the time signal into a spectrogram with sufficient
temporal resolution and sub half-note bin width throughout
the spectrum. With an algorithm inspired by PreFest [4, 5],
a salient pitch line is extracted from the spectrogram. In a
melody segmentation process that has been developed based
on the works of Heinz [2], a sequence of temporally discrete
note objects is derived from the pitch line in conjunction
with further spectral information. These note objects are
then quantised to a discrete 12-tone note grid, resulting in a
sequence of discrete musical notes.

4.3. Melody Similarity Search
The look-up is carried out as string alignment process [6],
which has been adapted for melody search [7] on discrete
note representations of the melodies. As basic search al-
phabet, the relative change of a melody over time, i.e. not
notes, but descriptions of note transitions are used, repre-
sented by the note intervals and ratio of inter-onset intervals.
This makes the search algorithm independent from absolute
tempo and pitch.

As further investigations have shown, human individuals
tend to render melodies in about the correct tempo, so the
absolute note length has been added to the evaluation criteria
of the melody search [8].

The alignment is carried out as a semi-local alignment,
meaning that the whole query string must match any part of
the reference string, and returns a value that increases with
the similarity of the query to the reference.

In a post processing step, the contours of theM best
matching melodies are compared to the contour of the query,
and a correction of the alignment values is carried out. In the
current implementation,M = 50 is used.

As the resulting alignment values depend on the size of
the query string (the longer the string, the greater the max-
imum possible value), the values have to be normalised to
allow an assessment of the alignment quality.

5. Results and Discussion
The data used consists of about 2000 MIDI noise files, 48
ground truth MIDI files and 2797 renditions of these 48
melodies as wave2 , pitch vector and MIDI files. Task 1 uses
the noise files and the ground truth files as database and the
vocal renditions as queries and measures reciprocal rank of
the matching ground truth file. Task 2 uses the noise files,
the ground truth files and the renditions as database and the
renditions as query and measures the recall rate of versions
of the query song among the top 10 results.

An overview3 of the results of the QBSH tasks can be
found in table 2.

As could be expected, the physiological ear model out-
performed the warped FFT extraction in both tasks, while
both are no match for some of the best algorithms. The
warped FFT extraction algorithm is also known for having
some problems with distorted files, and may have had some
problems with the 8-bit quantisation of the query files.

Surprisingly, the version using midi files performed very
weak in task 1, which may be explained by the mediocre
quality of the query midis, which where generated automat-
ically from pitch vector files4 . This assumption is also sup-
ported by the increase of performance in task 2 – possibly
the query MIDI files were more similar to each other than to
the respective ground truth files.

One main problem of the described algorithms is prob-
ably the similarity search engine that has only been devel-
oped and optimised until 2004. Recent developments on
other features and more elaborate search strategies proved
to be more successful on this task.

6. Conclusive Remarks
The algorithms solely depending on note-quantised melodies
are clearly outperformed by algorithms using multiple stage
search algorithms and/or pitch vectors to represent singing
queries. This allows at least the assumption that pitch vec-
tors are a better representation for sung inputs than quan-

2 8kHz, 8bit, mono
3 See http://www.music-ir.org/mirex2006/index.php/QBSH:Query-by-

Singing/HummingResults for full results and information on participants
4 See QBSH discussion page on http://www.music-ir.org/mirex2006 for

details
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tised melodies. This may prove to be an important result for
further development on QBSH systems.
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Abstract
This paper describes HCCL lab’s submission to the Query-
by-Singing/Humming(QBSH) task of Music Information Re-
trieval eXchange(MIREX) 2006. As we do not participate
in the second sub-task, this paper will only deal with the
Known-Item Retrieval sub-task. In the submitted system,
we apply a novel algorithm called Recursive Alignment(RA)
to compute the similarity score between query and candi-
dates. We also employ the multilevel filter strategy to reduce
the running time. Finally, we give the evaluation results of
the presented system.

Keywords: MIREX, QBSH, Music Information Retrieval

1. System Overview
This section gives a overview of the submitted system.Figure1
presents the framework of the submitted system which orig-
inates from [1]. The system consists of four stages: (1) fea-
ture extraction (2) filters using part of the query (3) filters us-
ing the whole query and (4) final rescoring. Inspired by Vi-
ola who introduces cascade filters to detect human faces [2],
the system employs seven level filters to efficiently eliminate
unlike candidates. Basically the former filters are more effi-
cient but less accurate than the latter ones. Top-down fash-
ioned similarity measure algorithms are selected for the final
rescorer and most of the filters. We believe such category
of algorithms are more robust to local mismatches caused
by note-segmentation erorrs, inaccurate singing and grace
notes in the reference. The following sections will describe
these stages in detail.

2. Database Preprocess
The database are constructed with monophonic midi files.
Common used information such as pitch value, note dura-
tion and onset time is included in the database. Besides, we
also perform note compression, music phrase segmentation
and pentanotes clustering while building the database.

2.1. Note Compression
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Figure 1. System Framework

As we find in practice that most people shorten the long
notes when they sing, we compress the duration d which
is longer than the song average duration d to

d + log
[
1 + α(d− d)] /α

where α is a predefined constant.

2.2. Music Phrase Segmentation
Our analysis on real world queries shows that more than
98% of them start from the beginning of music phrases.
Thus we give each note a weight value to tell how proba-
ble this note could be the beginning of certain music phrase.
While computing the similarity score, this weight will be
considered. The value of the weight is decided by the con-
text such as neighboring rest notes, duration of the previous
note and repeating pattern.

2.3. Pentanotes Clustering
We cluster all the neighboring 5 notes into 128 classes us-
ing K-Mean algorithm. Meanwhile a forward table and a
inverse table are constructed to provide indexing between
classes and pentanotes.

3. Features Extraction
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Feature extraction includes pitch tracking and note segmen-
tation. The input query is 16bit encoded linear PCM with
8kHz sample rate.

3.1. Pitch Tracking
Pitch value is computed for each window of 25ms where ad-
jacent windows overlap by 15ms. Improved sub-harmonic
summation is adopted as the pitch tracking method[3]. Spec-
tral energy is normalized by the average energy around the
frequency, which lowers gross errors. Post processing such
as median filtering, linear filtering are adopted too.

3.2. Note Segmentation
We segment notes by using an energy-based approach [4].
It is processed as the following procedure. Firstly, voiced
sections and unvoiced sections are discriminated apart by
adaptive energy threshold. Secondly, notes are segmented
by the fluctuation of the harmonic energy and wave energy.
Thirdly, notes are split within which pitch fluctuation is be-
yond a semitone. Finally, notes whose duration is too short
are deleted or merged to its adjacent notes.

4. Filtering and Similarity Measure
The system introduces 7-level filters to efficiently eliminate
unlike candidates. Each filter keeps very high recall. The
former filters are more efficient but less accurate than the lat-
ter ones. Candidates which survive cascade filters are passed
to rescorer to re-compute the similarity score. A novel al-
gorithm called Recursive Alignment(RA) [1], which outper-
forms all other competitor algorithms in our experiment for
its high precision, is applied in pitch contour for rescoring.
Variations of RA which run much faster at the expense of
less accuracy are selected by some of the filters.

As is shown in Figure 1, the QBSH system has two fil-
tering stages. In stage 2 only the first few notes of the query
(usually the first 14 segmented notes) are used to generate
6000 most probable candidate melody sections. Then the
whole query is used to select 500 survivors out of the 6000
candidates in stage 3. The reason we do not use the whole
query in stage 2 comes from the consideration of runtime
efficiency. Table 1 lists all the filters used in the submitted
system.

4.1. Key Detection
Since the query and the candidate are usually from the dif-
ferent keys, we always subtract their own mean pitch dur-
ing the similarity computation. Furthermore, finer tuning
is made in the final rescore stage to determine the best key
transposition.

4.2. Pentanote Indexing
Pentanotes indexing is performed before all other filters.
Firstly part of the whole query are selected for stage 2. Then
all pentanote clusters are compared with the head and tail of
the part-query using frame-based RA algorithm. The 25%

Table 1. Cascade filters
LV Feature(s) Algorithm
Stage2: using part of the query
1 pitch contour pentanote indexing
2 pitch contour RA VarIII
3 variance, highest pitch, etc. linear classifier
4 segmented notes RA VarII
Stage3: using the whole query
5 pitch histogram distance linear classifier
6 segmented notes RA VarII
7 segmented notes RA VarII

m3m/4m/2m/40

(a) recursion depth=0
m3m/4m/2m/40

(b) recursion depth=1

T T

Q Q

m3m/4m/2m/40

(c)  before local tuning

T

Q

m3m/4m/2m/40

(d)  final alignment

T

Q

Figure 2. RA Alignment with 1 Recursion and 3 Possible Scale
Tries

most similar clusters are kept. With the index table we can
map these clusters to pentanotes in the database and con-
struct melody candidates. Usually several million candi-
dates are constructed after this filter.

4.3. Linear Classification with Simple Features
The second and the fifth filters are linear classifiers using
simple features such as pitch variance, highest pitch value
and pitch histogram etc. Compared with either pitch contour
or note sequence, they are one dimension features which
need few computation to compute or to classify. And also
compared with N-grams, they are global view features which
seem to be robust to local errors. Here Manhattan distance is
adopted to calculate the similarity between two histograms.
The classification thresholds are predefined constants.

4.4. RA and RA variations
Recursive Alignment(RA) [1] inspired by J.Jang’s LS [5] is
a top-down algorithm to match query and melody candidate
at frame level. The basic idea of RA comes from the fact
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that the query and the candidate are similar if and only if
they roughly share the same shape in the global view. The
algorithm divides the candidate melody into 2N parts recur-
sively and each part uses a linear alignment scale. After
that local tuning is applied to get the final alignment path.
Figure2 gives an example of RA. The main difference be-
tween RA and other frame level alignment algorithms such
as DTW is RA’s top-down fashion. In RA higher level de-
cision is always made ahead of lower ones, that is, global
scale factor which is determined before local ones will re-
strict the local scales within a reasonable range. We believe
such top-down style can handle long-distance information
(rhythm and duration for example) better.

RA variations are employed by some filters. RA VarII
uses segmented notes instead of frames while computing
score which reduces complexity magnitude from frame or-
der to note order. RA III divides frequency space into several
bands and binarizes the pitch value in each sub-band, so the
score of several frames can be computed in parallel utilizing
the 32-bit bandwidth of computers.

5. System Implementation
The system is implemented with C++ and is built in Win32
environment with Intel C++ Compiler 9.0. We submit two
executable files based on different assumptions. The first
one assumes that the queries are always from the beginning
of the targets, which fits the case of the evaluation. The
second one allows the user start from any position of the
target song, which is relatively slower and less accurate but
we think it has more practical value.

6. Evaluation Result
The queries are 2797 wave files and the database containing
48 ground truth MIDI files along with 2000 Essen Collec-
tion noise MIDI files. Before recognition starts, we convert
all queries into 16bit linear encoded format with 8K Hz sam-
ple rate.

We achieved the best results among all contestants in the
subtask we participated. For the system ”match from be-
ginning”, the Mean Reciprocal rank (MMR) is 0.926. For
the system ”match from anywhere”, the MMR is 0.900. We
think the submitted system mainly benefits from two things:
firstly, introducing top-down fashioned RA algorithm which
considers long-distances shape of pitch contour while op-
timizing the alignment; secondly, employing carefully se-
lected filters which greatly reduce the search space while
keeping high recall. The system gives a good performance
even if there is no assumption of singing from beginning
because it is designed for this intention. In the future, we
may focus on revising the MIDI database to make the refer-
ence more similar to human singing. Perhaps some statisti-
cal technologies are needed.
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Abstract
This extended abstract presents a submission to the Music
Information Retrieval Evaluation eXchange (MIREX) in the
symbolic Melodic Similarity task. This submission is an
implementation of an extension of the edit-distance tech-
nique to the polyphonic context. Melodies are represented
by quotiented sequences. A quotiented sequence is a se-
quence graph defined with an additional equivalent relation
on its vertices and such that the quotient graph is also a se-
quence graph. The core of the method relies on an adapta-
tion of edit-distance metrics, regularly applied in bioinfor-
matic context. Results are presented and discussed in the
monophonic and polyphonic contexts.

Keywords: symbolic melodic similarity, edit-distance, quo-
tiented sequence, polyphony.

1. Similarity Scores
1.1. Problem formalization

To take into account the polyphonic nature of musical se-
quences, we propose to use a quotiented sequence repre-
sentation. Formally, a quotiented sequence is a sequence
graph with an equivalence relation defined on the set of ver-
tices, and such that the resulting quotient graph is also a se-
quence. By definition, in a quotiented sequence, quotient
graph and support sequence are both sequences. A quo-
tiented sequence can thus be considered as a self-similar
structure represented by sequences on two different scales.
Note that a quotiented structure can also be viewed as a tree
graph.

In this paper we propose to extend the representation of
monophonic melodies as sequences of pitches and durations
[2]. In the context of polyphonic music, notes that occur at
the same time are grouped to form a quotiented sequence.
Each vertex of the quotiented sequence is labelled by the
pitch and the duration of each note. The pitch is coded ac-
cording to the difference with the tonic (in semitones), so
that the algorithms proposed are transposition invariant. The
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tonic of the piece considered has to be known beforehand.
The duration is coded in sixteenth note values.

The score s depends on the pitch range and on the dura-
tion difference between two notes x1 and x2:

sQ = spitch + Ksduration

where spitch is the score due to the difference of pitch, and
sduration is the score due to the difference of duration. The pa-
rameter K determines the relative weight of the pitch differ-
ence with the duration difference. The score sduration is simply
the difference of duration (in sixteenth note values) between
notes x1 and x2. The score spitch is determined according to
consonance: the fifth (7 semitones) and the third major or
minor (3 or 4 semitones) are the most consonant interval in
Western music. The score associated with the empty sym-
bol is computed according to the score between a note and
a rest. This score has been fixed.

This approach leads us to consider any polyphonic se-
quence as a series of ordered pairs. As for monophonic se-
quence, each pair is defined by the pitch of the note and its
length (coded in sixteenth note values). The pitch of the
note is coded as the difference (in semitones) with the tonic.
This difference is determined modulo an octave and is thus
defined in the range [0, 11] semitones.

1.2. Edit Score
We propose to consider only three operations (substitution,
deletion and insertion), that are usually used to compare mu-
sical sequences. Ferraro and Godin [1] have recently intro-
duced an edit distance between unordered quotiented trees
based on a comparison of support graph and edit opera-
tions that preserves equivalence relations. We propose here
a symmetric approach by comparing quotiented sequences
at the more macroscopic scale. Basically, quotiented se-
quences refer to sequences whose nodes are also sequences.
Edit score related to quotient vertices is then defined as an
edit score computation between the support subsequences of
these vertices.

The main difference between this recursive relation and
the computation of global edit score between sequences lies
in the computation of the score of the edit operations be-
tween quotient vertices. They are computed as the edit score
between the support subsequences corresponding to the quo-
tient vertices. The complexity of this algorithm is O((|S1|+
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|Q1|)× (|S2|+ |Q2|), where |Q1| and |Q2| represent the re-
spective number of chords in polyphonic musical sequences
S1 and S2.

1.3. Local Alignment
In many applications, two strings may not be highly similar
in their entirety but may contain regions that are highly sim-
ilar. This is particularly true when long streches of anony-
mous sequences are compared, since only some internal sec-
tions of those strings may be related. In this case, the task is
to find and extract a pair of regions, one from each of the two
given strings, that exhibit high similarity. This is called lo-
cal alignment or local similarity problem [3] and is defined
as : Given two strings S1 and S2, find substrings ρ1 and
ρ2 of S1 and S2, respectively, whose similarity is maximum
over all pairs of substrings from S1 and S2.

The computation of a local similarity allows to detect lo-
cal conserved areas between both sequences. The solution
of such a problem is based on the notion of suffix mapping
between sequences.

The local suffix mapping problem for a given pair x1, x2

of vertices is to find a (possibly empty) suffix ρ1 of S1[x1]
and a (possibly empty) suffix ρ2 of S2[x2] such that the score
of the optimal sequence of edit operations transforming ρ1

into ρ2 is the maximum over all scores of sequences of edit
operations between suffixes of S1[x1] and S2[x2].

Similarly to the computation of an optimal score between
quotiented sequences, the complexity of solving the local
suffix mapping problem between quotiented sequences is
O((|S1|+|Q1|)×(|S2|+|Q2|). All optimal local alignments
of two quotiented sequences can be represented in two dy-
namic programming tables and can be found by tracing any
pointers back from any cell with the optimal value.

2. Experimentations and Results
3. Conclusion
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1. Introduction
In this abstract we describe very briefly the three algorithms
that we submitted to this year’s MIREX competition for
symbolic similarity. All three algorithms only work for the
comparison of monophonic melodies, and thus only entered
the RISM task of the symbolic similarity competition.

2. Constructing hybrid algorithms from the
SIMILE toolbox
In the past we have explored different methods for abstract-
ing information within different musical dimensions from
melodies and for comparing, i.e. measuring the similarity,
two abstract sequences which may represent monophonic
melodies. All abstraction and similarity computation meth-
ods are implemented in our software toolbox SIMILE . The
individual methods are described in greater detail in [7].

2.1. Melodic dimensions and abstraction methods
The abstraction methods we implemented so far for repre-
senting data in different musical dimensions of single line
melodies are:

• Pitch: MIDI quantisation, leap/step-quantisation, Par-
sons Code, see [7].

• Rhythm: Categorisation to five duration classes, rep-
resentation as ’gaussified’ values, see [7], [2].

• Contour: Different methods for smoothing coarse di-
rectional movements, Fourier transform, see e.g. [10].

• Implied tonality: Categorisation according to harmonic
content as based on Krumhansl’s tonality vector, e.g.
[5].

• Accent structure: Combinations of Gestalt-like accent
rules from psychological literature, e.g. [4].
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2.2. Similarity algorithms
Data from any abstraction method can be combined with
most of the following similarity algorithms that are employed
for doing the actual comparision.

• Edit Distance: e.g. [6]

• n-grams: e.g. [1]

• Geometric distance: [10]; [8]

• Correlation coefficient: e.g. [10]

3. The employed algorithms
We tried three different algorithms on the competition items
(RISM incipits) to learn a little bit about the behaviour of
different approaches with this particular melodic material
(short beginning phrases of classical melodies).

3.1. KF1
KF1 was the name for the algorithm we submitted to last
year’s MIREX competition. This algorithm was optimised
on a set of human experts ratings of short melodic phrases
mainly from pop tunes. A detailed description can be found
in the extended abstract of our last year’s submission [3]

3.2. KF2
KF2 stands for an algorithm which proofed to be the best
hybrid combination of abstraction methods and algorithms
in our study with pop music tunes [7]. There it was termed
opti3 , and it consists of three different individual algo-
rithms:

KF2 = 0.505 · nGrUkkon + 0.417 · rhythFuzz
+0.24 · harmCorE− 0.146

where

• nGrUkkon: measure based on the Ukkonen distance
of pitch intervals 3-gram.

• rhythFuzz: Edit distance of sequences of cate-
gorised rhythm values.

• harmCorE: Harmonic measure: The main tonality
of the melody is calculated according to Krumhansl’s
algorithm and the two tonalities are compared with
the edit distance.
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3.3. KF3
KF3 was one of our new and still very experimental ap-
proaches to melodic similarity measurement. It is based
on the calculation of melodic accents. To this end, for ev-
ery note of the two melodies, we calculate binary accents
weights according to the following rules:

• phrasend: Ending of melodic phrase.

• phrasbeg Beginning of melodic phrase.

• beat13: Note on beat 1 or 3 of bar.

• shortpr: Accent of second note of 2-note phrase.

• longmod: Duration longer than mode of all dura-
tions in phrase.

• pextrem: Melodic contour turning point.

• jumpaft5: Note after a jump of at least 5 semi-
tones.

For every rule that evaluates to true an accent value of 1 is
allocated to that specific note. All accent values are summed
for each note. This general approach and the individual rules
in particular are described in greater detail in [9].

For the two melodies we receive therefore two resulting
number sequences, which are then compared using the Edit
Distance algorithm where each number is treated as a sepa-
rate symbol and costs for deletion, insertions, and substitu-
tions is always 1.

4. Contest results
As last year’s MIREX test set hasn’t been published and
we weren’t able to learn from the particular type of melodic
phrases, we submitted three very different algorithms. The
failure of KF1 in last year’s and this year’s MIREX shows
clearly the detrimental effects of overfitting. KF1 performed
very well in predicting human listener judgements regarding
the similarity of a specific set of pop music phrases, when
it was tested on a separate test set comprising short phrases
from the same repertoire. But its internal complexity and its
very bad performance on the RISM incipits suggest that it is
heavily overfitted to the specific type of data set that is was
constructed from.

We are surprised by the still acceptable performance of
KF3, which ignores all specific pitch and duration informa-
tion and instead relies on some quite abstract melodic ac-
cents computation. This could mean that accent structure is
indeed an important aspect of a melody’s identity. In a future
optimisation round, this algorithm should be combined with
similarity approaches that consider the melody data (pitch
and duration) with less abstraction.

KF2 is the algorithm that has proven to be reliable in a
variety of situations in the past (e.g. comparing pop mu-
sic tunes and folk song phrases). We therefore are quite

pleased that without any further modification it worked also
well on the competition data set and delivered results which
are close behind the two algorithms that scored best.
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Abstract
This paper describes the submission to the MIREX‘06 (Mu-
sic Information Retrival Evaluation eXchange) first score
following tasks.

1. Overview
Score following is the key to an interaction with a written
score/song based on the metaphor of a performer with an
accompanist or band. For a historical review of score fol-
lower systems we refer the reader to [1, 2].

The Score Following Player submitted accepts monophonic
audio and MIDI input from the performer. The audio fol-
lowing modules uses a core algorithm based on Hidden Markov
Models (HMM). Figure 1 shows a block diagram overview
of the follower algorithm.

The problem of matching a performance with a score can
be considered a special case of sequence alignment, which
has been extensively addressed in other research areas, no-
tably in speech recognition and in molecular genetics. In
both these domains, HMMs have become extremely popu-
lar due to their outstanding results. The HMM in Figure 1
can also be viewed as a sequential model of the score where
the states (score events) can not be directly observed. What
is observed by the system is the probabilities assigned to
each state of the score model which are used consequently
by a decoding algorithm to match the realtime audio to an
event in the score. In the following section we describe the
methodology for each block in Figure 1.

2. Score model
The music score is modeled as HMMs where each state rep-
resents an event in the score. The topology of the HMM is
left-to-right, in accordance with the temporal precedence of
score events. Each event in the score is modeled as a se-
quence of states. These states take into account, for each
score event, the features related to the attack, the sustain,
and the possible silence at the end. Figure 2 shows a sample
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Figure 1. Overview of Score Follower system

note model used in our system. A silence model is essen-
tially the same but with rest states instead of sustains and
attacks.

...a s ss ar

Figure 2. Note model used in Score HMM. a stands for attack,
s for sustain and r for rest.

The number of states (n) and transition probabilities (p
for forward and 1 − p for self) at each low level event is
determined by solving for n and p in a binomial distribution
given the mean (np) as the duration of the event according
to the given score and a fixed variance (np(1− p)) (50% of
the duration here).

Given this note model in terms of HMMs, a score can
be represented by accumulating all the note and rest events
according to the score and in a sequential manner. Figure 2
shows a sample score and its corresponding score model.

... ... ... ...a s ss a sss r rr a s ssr r r

Figure 3. Sample score and corresponding HMM model.
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3. Observation Modeling
Observation in the context of our system consists of calcu-
lating features from the audio spectrum in real-time and as-
sociate the desired probabilities for low-level HMM states.
Low-level states in our system are attack, sustain and rest
for each note in the score. Spectrum features are Log of
Energy, Spectral Balance and Peak Structure Match (PSM).
We will not go into implementation details of the mentioned
features which are described in [1, 3, 2]. The observation
process can be seen as a dimension reduction process where
a frame of our data, or the FFT points, lies in a high di-
mensional space <J where J is 2048. In this way, we can
consider the features as vector valued functions, mapping
the high dimensional space into a much lower dimensional
space, or more precisely to 2 + N dimensions where N is
the number of different notes present in the score for the
PSM feature. Another way to look at the observation pro-
cess is to consider it as a probability mapping between the
feature values and low-level state probabilities. A diagram
of the observation process is demonstrated in Figure 4. In
this model, we calculate the low-level feature probabilities
associated with each feature which in terms are multiplied
to obtain a certain low-level state feature probability. As an
example, the Log of Energy feature will give three probabil-
ities Log of Energy for Attack, Log of Energy for Sustain
and Log of Energy for Rests. In order to calculate proba-
bilities from features, each of the 8 low-level state feature
probabilities is using probability mapping functions from
a database of stored trained parameters. They are derived
from Gaussians in forms of cumulative distribution func-
tions (CDFs), inverse cumulative distribution functions or
PDFs depending on the heuristics associated with each fea-
ture state. Note that the dimension of each model used is
one at this time. By this modeling we have assumed that
the low-level states’ attributes are global which is not totally
true and would probably fail in extreme cases. However,
due to a probabilistic approach, training the parameters over
these cases would solve the problem in most cases we have
encountered. Another assumption made is the conditional
independence among the features, responsible for the final
multiplication of the feature as in Figure 4.

Log of Energy Spectral Balance PSM

FFT

LogE SustainLogE Rest LogE Attack SB SustainSB Rest SB Attack PSM Sustain PSM Attack

Rest State Probability Attack State Probability Sustain State Probability

Audio Frame Data

Trained 

Gaussian 

Database

Figure 4. Probability Observation Diagram

4. Decoding and Alignment
Once the observation probabilities are calculated for states
in the score model, they are used by a decoding scheme
to decide what is the appropriate current high-level state
using present and past information. The Bayesian frame-
work in this submission considers observation probabilities
as P (yt|xk

t ) where yt is a realtime audio observation at time
t and xk

t would be the (hidden) state k in the score. Us-
ing this scheme, the current belief of the system is com-
puted as in Equation 1 where Z is a normalizing constant,
P (xk

t |xk∗
t−1) is the transition prior from the score model and

P (xk
t−1|y1:t−1) is the previous belief of the system. This

way, the current high-level state can be decoded by Equa-
tion 2.

P (xk
t |y1:t) =

1
Z

P (yt|xk
t )P (xk

t |xk∗
t−1)P (xk

t−1|y1:t−1) (1)

k∗ = argmax
k

P (xk
t |y1:t) (2)

5. Conclusion
In this paper, we briefly described our submission to MIREX‘06
Score Following task. In a real-world application, our obser-
vation model accepts piece-specific and instrument-specific
trained data as parameters of each CDF described above.
For this submission, since training was not considered for
the contest, we use default parameters. Extensions to the
system described in this paper as well as more material can
be found in [4] and references herein.
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