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Abstract
In a recent empirical study, various methods for detecting
the onset times of musical notes in audio signals were eval-
uated [1]. The study focussed on published methods based
on spectral features such as the magnitude, phase and com-
plex domain representations, and compared existing meth-
ods (spectral flux, phase deviation and complex difference)
with proposed improvements to these methods (weighted
phase deviation, normalised weighted phase deviation and
rectified complex difference). Two test sets were used: a set
of short excerpts from a range of instruments (1060 onsets),
plus a much larger data set of piano music (106054 onsets).
Results showed a similarly high level of performance with
a magnitude-based (spectral flux), a phase-based (weighted
phase deviation) or a complex domain (complex difference)
onset detection function. For MIREX 2006, the following
five onset detection functions were submitted: spectral flux,
complex domain, rectified complex domain, weighted phase
deviation and normalised weighted phase deviation.

Keywords: MIREX, spectral flux, phase deviation, complex
domain

1. Introduction
Recent reviews and evaluations of onset detection methods
can be found in [2, 3, 4, 1]. The onset detection functions de-
scribed in this document are more fully described and com-
pared in [1]. Although it is clear that different methods are
suitable for different data sets, we focus on simple, general-
purpose methods of finding onsets. All methods presented
here share the same peak picking algorithm, which limits
the closeness of successive onsets. For polyphonic music,
this might penalise the algorithms, depending on how the
evaluation is performed.

2. Onset Detection Functions
An onset detection function is a function whose peaks are
intended to coincide with the times of note onsets. Onset
detection functions usually have a low sampling rate (e.g.
100Hz) compared to audio signals; thus they achieve a high
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level of data reduction whilst preserving the necessary in-
formation about onsets. Most onset detection functions are
based on the idea of detecting changes in one or more prop-
erties of the audio signal.

If an audio signal is observed in the time-frequency plane,
an increase in energy (or amplitude) within some frequency
band(s) is a simple indicator of an onset. Alternatively, if
we consider the phase of the signal in various frequency
bands, it is unlikely that the frequency components of the
new sound are in phase with previous sounds, so irregulari-
ties in the phase of various frequency components can also
indicate the presence of an onset. Further, the phase and en-
ergy (or magnitude) can be combined in various ways to pro-
duce more complex onset detection functions. These ideas
form the basis of the onset detection functions described in
this paper.

All of the methods presented here make use of a time-
frequency representation of the signal based on a short time
Fourier transform using a Hamming windoww(m), and cal-
culated at a frame rate of 100 Hz. IfX(n, k) represents the
kth frequency bin of thenth frame, then:

X(n, k) =

N
2 −1∑

m=−N
2

x(hn+m) w(m) e−
2jπmk

N

where the window sizeN = 2048 (46 ms at a sampling rate
of r = 44100 Hz) and hop sizeh = 441 (10 ms, or 78.5%
overlap).

2.1. Spectral Flux
Spectral flux measures the change in magnitude in each fre-
quency bin, and if this is restricted to the positive changes
and summed across all frequency bins, it gives the onset
functionSF [5]:

SF (n) =

N
2 −1∑

k=−N
2

H(|X(n, k)| − |X(n− 1, k)|)

whereH(x) = x+|x|
2 is the half-wave rectifier function.

Empirical tests favoured the use of theL1-norm here over
theL2-norm used in [6, 2], and the linear magnitude over
the logarithmic (relative or normalised) function proposed
by Klapuri [7].



2.2. Phase Deviation
The rate of change of phase in an STFT frequency bin is an
estimate of the instantaneous frequency of that component.
This can be calculated via the first difference of the phase of
X(n, k). Letψ(n, k) be the phase ofX(n, k), that is:

X(n, k) = |X(n, k)| ejψ(n,k)

where−π < ψ(n, k) ≤ π. Then the instantaneous fre-
quency is given by the first differenceψ′(n, k):

ψ′(n, k) = ψ(n, k)− ψ(n− 1, k)

mapped onto the range(−π, π]. The change in instanta-
neous frequency, which is an indicator of a possible onset,
is given by the second difference of the phase:

ψ′′(n, k) = ψ′(n, k)− ψ′(n− 1, k)

which is also mapped onto the range(−π, π]. Large discon-
tinuities in the unwrapped phase or its derivatives can wrap
around to 0, but the onset detection function based on phase
deviation,PD , takes the mean of the absolute changes in in-
stantaneous frequency across all bins [8, 2], which reduces
the chance of a missed detection:

PD(n) =
1
N

N
2 −1∑

k=−N
2

|ψ′′(n, k)|

2.3. Weighted Phase Deviation
Phase deviation performs poorly because of “noise intro-
duced by components with no significant energy” [2]. That
is, the function considers all frequency binsk equally, al-
though the energy of the signal is concentrated around the
bins containing the partials of the currently sounding tones.
The weighted phase deviation(WPD) function takes this
into account by weighting the phase deviation values by the
magnitude of the corresponding frequency bin:

WPD(n) =
1
N

N
2 −1∑

k=−N
2

|X(n, k) ψ′′(n, k)|

The normalised weighted phase deviation(NWPD) func-
tion is similar, except that the sum of the weights is factored
out, to give a weighted average phase deviation:

NWPD(n) =

∑N
2 −1

k=−N
2
|X(n, k) ψ′′(n, k)|∑N

2 −1

k=−N
2
|X(n, k)|

2.4. Complex Domain
Another way of jointly considering amplitude and phase is
to search for departures from “steady-state” behaviour in
the complex domain, by calculating the expected amplitude

and phase of the current binX(n, k), based on the previous
two binsX(n − 1, k) andX(n − 2, k). The target value
XT (n, k) is estimated by assuming constant amplitude and
rate of phase change:

XT (n, k) = |X(n− 1, k)| eψ(n−1,k)+ψ′(n−1,k)

and therefore a complex domain onset detection function
CD can be defined as the sum of absolute deviations from
the target values:

CD(n) =

N
2 −1∑

k=−N
2

|X(n, k)−XT (n, k)|

This formulation is simpler but equivalent to the complex
domain detection function in [2, 9].

2.5. Rectified Complex Domain
One problem with theCD method is that it does not distin-
guish between increases and decreases in amplitude of the
signal, so that onsets are not distinguished from offsets. The
rectified complex domain (RCD) onset detection function
uses half-wave rectification to preserve the complex differ-
ences only in spectral bins where energy is increasing:

RCD(n) =

N
2 −1∑

k=−N
2

RCD(n, k)

where

RCD(n, k) =


|X(n, k)−XT (n, k)|, if|X(n, k)| ≥

|X(n− 1, k)|
0, otherwise

3. Onset Selection
The onsets are selected from the detection function by a
peak-picking algorithm which finds local maxima in the de-
tection function, subject to various constraints. The thresh-
olds and constraints used in peak-picking have a large im-
pact on the results, specifically on the ratio of false positives
to false negatives. For example, a higher threshold gener-
ally reduces the number of false positives and increases the
number of false negatives. The best values for thresholds are
dependent on the application and the relative undesirability
of false positives and false negatives.

Peak picking is performed as follows: each onset detec-
tion functionf(n) is normalised to have a mean of 0 and
standard deviation of 1. Then a peak at timet = nh

r is se-
lected as an onset if it fulfils the following three conditions:

f(n) ≥ f(k) for all k such that n− w ≤ k ≤ n+ w

f(n) ≥
∑n+w
k=n−mw f(k)
mw + w + 1

+ δ

f(n) ≥ gα(n− 1)



PN PP NP CM Sonatas Error
SF 0.952 0.984 0.967 0.882 0.964±0.017 8.8
WPD 0.947 0.912 0.966 0.836 0.912±0.028 9.6
NWPD 0.938 0.971 0.958 0.879 0.944±0.021 10.3
CD 0.946 0.978 0.936 0.876 0.966±0.015 12.8
RCD 0.963 0.981 0.963 0.877 0.955±0.018 9.3

Table 1. Results of onset detection tests for 5 onset detection func-
tions (SF, WPD, NWPD, CD and RCD). The first four columns
show the maximum of the F-measure for the four subsets of data
set 1: pitched non-percussive (PN), pitched percussive (PP), non-
pitched percussive (NP) and complex mixture (CM). The last 2
columns show results for data set 2 (Sonatas): the F-measure with
standard deviation of F-measures across sonatas and average ab-
solute error in ms.

wherew = 3 is the size of the window used to find a local
maximum,m = 3 is a multiplier so that the mean is calcu-
lated over a larger range before the peak,δ is the threshold
above the local mean which an onset must reach, andgα(n)
is a threshold function with parameterα given by:

gα(n) = max(f(n), αgα(n− 1) + (1− α)f(n))

Experiments were performed with various values of the
two parametersδ andα, and it was found that best results
were obtained using both parameters, but the improvement
in results due to the use of the functiongα(n) was marginal,
assuming a suitable value forδ is chosen.

4. Results
Before submission, two data collections were used for test-
ing the onset detection functions. The data from Bello et
al. [2], consists of 4 sets of short excerpts from a range
of instruments, classed into the following groups: NP —
non-pitched percussion, such as drums (119 onsets); PP —
pitched percussion, such as piano and guitar (577 onsets);
PN — pitched non-percussion, in this case solo violin (93
onsets); and CM — complex mixtures from popular and jazz
music (271 onsets). The second data collection consists of
about 4 hours of Mozart Piano Sonatas (106054 onsets) —
two orders of magnitude more than that used in other evalu-
ations — and includes complex passages such as trills, fast
scale passages with pedal and arpeggiated chords. The level
of complexity is such that a human annotator would not be
able to mark all the onsets precisely.

Table 1 shows the results across these two data sets. In
each case, the results are shown for the point on the ROC
curve which gives the maximum value of the F-measure.
That is, the ground-truth data was used to select optimal
values ofδ andα. Further issues involving evaluation are
discussed in [1].

In these results, the spectral flux, weighted phase devi-
ation and complex domain methods all achieved a similar
level of performance on this data, so that the choice of a

Entry Precision Recall F-measure
roebel-3 0.836 0.779 0.788
roebel-2 0.831 0.769 0.780
roebel-1 0.861 0.746 0.777
du 0.797 0.799 0.762
brossier-hfc 0.752 0.774 0.734
dixon-sf 0.736 0.790 0.726
brossier-dual 0.769 0.735 0.724
brossier-complex 0.780 0.725 0.721
dixon-rcd 0.735 0.765 0.716
dixon-cd 0.709 0.776 0.710
brossier-specdiff 0.764 0.701 0.707
dixon-wpd 0.663 0.786 0.685
dixon-nwpd 0.524 0.908 0.620

Table 2. Average precision, recall and F-measure for the best pa-
rameter setting for each of the MIREX 2006 entries, sorted by F-
measure.

suitable algorithm could be based on other factors such as
simplicity of programming, speed of execution and accu-
racy of correct onsets (right column), which all speak for
the spectral flux onset detection function (SF).

The results from the MIREX 2006 competition are shown
in Table 2. The performance of the onset detection functions
is much lower than in Table 1. There are a number of rea-
sons why this is the case: first, the parameter settings used
in Table 1 were refined with knowledge of the onset times,
allowing some amount of overfitting to the data. From the
results in Table 2, it is clear that the range of parameter set-
tings for the submitted onset detection functions was too
narrow, so that the optimal point on the ROC curve was
not reached in each case. This is particularly clear for the
case of the NWPD function, where a bug in the submitted
code led to wrong parameter values being used. It is also
worth noting that the data used in Table 1 are relatively easy
for onset detection; the first part consists of simple music,
and the second part consists of complex music played on a
simple-to-detect instrument, the piano. Further analysis of
the results will yield insights into the specific strengths and
weaknesses of the individual algorithms.
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