
Sweepline and Recursive Geometric Algorithms for Melodic Similarity

Kjell Lemström, Niko Mikkilä, Veli Mäkinen and Esko Ukkonen
C-BRAHMS Group, Department of Computer Science

P.O.Box 68 (Gustaf Hällströmin katu 2b)
FIN-00014 University of Helsinki, FINLAND

{klemstro,mikkila,vmakinen,ukkonen}@cs.helsinki.fi

Abstract
This extended abstract gives an overview on two content-
based retrieval algorithms for symbolic music, developed
earlier in the C-BRAHMS group [1], that took part in the
Symbolic Melodic Similarity and Query by Singing/Humm-
ing tasks of the MIREX 2006 contest [3, 4]. Given two ex-
cerpts of symbolically encoded monophonic or polyphonic
music, the query pattern and the target music, the purpose
of these algorithms is to find musically relevant occurrences
of the query pattern within the target music.

Keywords: MIREX 2006, Melodic Similarity, Geometric
Matching

1. Introduction and Background from
MIREX 2005
In the previous MIREX contest organized in 2005 we sub-
mitted both a basic monophonic string-matching algorithm
and the same geometric algorithm that is described in this
abstract. Last year the Symbolic Melodic Similarity (SMS)
task only included monophonic music from the RISM A/II
collection of incipits and the results were compared to a
human-generated ground truth. Both our string-matching al-
gorithm and the more complex geometric algorithm seemed
to work equally well, with the geometric algorithm perform-
ing only slightly better. One of the reasons for that perfor-
mance was probably the fact that the string-matching algo-
rithm does not use any rhythmic information at all and the
geometric method is not time-scale (tempo) invariant; it re-
quires that both the query and target melodies are played at
the same speed.

This year in MIREX 2006 there were two Symbolic Mel-
odic Similarity subtasks: a monophonic task based on the
RISM collection and both exact (quantized in pitch and rhyt-
hm) and hummed queries; and a similar polyphonic task
based on MIDI files harvested from the Internet [3]. We
were especially interested in the polyphonic task and there-
fore we submitted the same geometric P3 algorithm that
we submitted last year, only this time as two entries: the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
c© 2006 University of Victoria

original one (P3) and a brute force tempo scaling version
(ScaledP3) that runs the original algorithm multiple times
with the pattern scaled in time by predefined constant factors
and retrieves the best match across the runs. An overview of
these algorithms is given in section 2.

We also intended to submit ScaledP3 to the Query by
Singing/Humming (QBSH) task but after testing various ap-
proaches with the data set, we decided to use a recursive ex-
haustive search algorithm instead. The MIDI data available
represented some challenges and the alternative would have
been to process the queries with our own melody extraction
method which we do not have yet. The ES algorithm is de-
scribed in section 3.

2. Sweepline Algorithm
Our submission to the SMS task is based on a geometric
sweepline technique that is applied on a piano-roll type rep-
resentation of the musical score [2]. The intuition behind
this algorithm is to slide the bar-lines representing the query
over the piano-roll representation of target and to find the
position that gives the maximal common shared time (see
Figures 1 and 2).

1 2 3 4 5 6 7 8

60

62

64

66

68

70

72

pitch

time

Figure 1. Query in piano-roll representation.

To this end, the piano-roll representations of the query
and the target music are given to the algorithm as lexico-
graphically ordered turning points that are calculated based
on the start and end points of the bar-lines representing the
query and the target.

The algorithm first populates a priority queue with two
translation vectors for each turning point in the pattern. In
the beginning the vectors point to first starting and ending
point in the target. After this initialization the algorithm
loops through all possible translation vectors between the



2 3 4

pitch

time

Figure 2. Target in piano-roll representation. The first twelve
notes of the query in Figure 1 are shown by shading in a trans-
lated position such that the total length of the overlapping is
six quarter notes.

query and the target. At each iteration the first vector in lex-
icographic order is retrieved from the queue and replaced by
the next corresponding vector (a vector for the same turning
point in the query) that has not yet been inserted into the
queue.

When the algorithm iterates over translation vectors, it
counts common time between the query and the target on
each vertical translation level to ensure transposition invari-
ance. The time is counted by using a linear slope that the
translation vectors adjust, and the maximal overlapping is
simply checked for at each iteration. Finally, normalizing
the maximal overlapping by the combined length of query
or target notes (whichever is smaller) results in a value that
expresses the similarity of the query and the target.

The brute force pattern-scaling version of the algorithm
simply uses the method described above multiple times with
the notes in either the pattern or the target scaled in time. We
used scaling factors 0.5, 0.667, 0.8, 1.0, 1.25, 1.5 and 2.0.
The selection of these values is not based on extensive ex-
perimentation, so they are probably not the optimal factors
for the task. Heuristics could perhaps be used to select a
suitable scale or to at least limit the range.

The overall best match is chosen simply by comparing
normalized overlap lengths of the best matches returned from
the runs with each scaling factor. With such a low number of
factors, good matches usually stand out from the rest. Using

more scaling factors would allow smoother matching, but
the algorithm execution time would also quickly increase
unbearably. This brute force method should give slightly
better results than the original one whenever note timing in
the query is not expected to be the same as timing in the po-
tential matches, just like in the SMS and QBSH tasks. Of
course, this will not help much with tempo changes that may
occur within hummed queries.

P3 runs in O(mn log m) time where m and n denote the
number of musical events (notes) in query and target, re-
spectively. The scaled version of the algorithm increases
the execution time by a constant factor of 7.

3. Recursive Algorithm
The ES algorithm that we submitted to the QBSH task also
uses a piano-roll representation of music, but it does not
maximize the overlapping in the same way as P3 does. In-
stead it performs an exhaustive depth-first search trying to
scale the pattern note-by-note to ’fit’ the target song, with
costs applied to local time-scaling, note duration changes
and pitch-shifting. Clearly irrelevant branches are cut with
simple heuristics while searching, which keeps the average
running time in an usable range, although the worst case
time complexity is O(nm).

First the algorithm divides the piano-roll representation
into tiles that have a height of one MIDI pitch level and
a width chosen so that there would not be many notes in
one tile. A pointer to the first note that starts in each tile
is stored to a table and subsequent notes at the same pitch
level are linked together. This tile table is used for hashing:
quickly finding notes that start within a specific range in the
target music. The tile table size is a compromise between
quick lookups and space consumption. We used a static tile
length of 100 ms but a more optimal value for each pitch
level could be chosen by scanning through the target music.

Next the target music is searched for the best occurrance
of the pattern by checking recursively for a match at each
note in the music, starting with each note in the pattern. For
note Ti in the target music and note Pj in the pattern, the
recursive check is started by calculating the expected pitch
and starting time interval of the next matching note, or mul-
tiple notes when gaps are allowed in the matches. All po-
tentially matching notes are looked up from the tile table,
match score is updated and the same check is executed re-
cursively for each of the notes, starting at the next position
in the pattern.

The most adjustable part of the algorithm is the way how
the following potentially matching notes are picked and scor-
ed at each recursion level. This procedure can be weighted
by the already matched part of the pattern or it can be done
independently for each position. To calculate the expected
pitch level, we simply take the pitch interval between Pj+1

and Pj , and add that to the pitch of Ti. Similarly, the dif-
ference between start times of the consecutive notes in the



pattern is scaled in proportion to previously matched notes
and added to the start time of Ti.

Pitch and tempo shifts are handled by retrieving all notes
within a certain range from the expected position: ± 2 pitch
levels and the delta time scaled by 0.5 – 2.0. Notes that
start outside this area are not considered further at that point
of recursion. Each melody line that continues from the re-
trieved notes is checked recursively and the match scores
are updated. Notes that are closest to the expected note po-
sition and have similar duration to the corresponding note in
the pattern receive the best score. This is done by multiply-
ing together factors derived from all these differences. 1.0
is a perfect match of a note and 0 is a complete mismatch.
Therefore the whole pattern has a maximal score of m− 1,
and match scores are normalized by dividing them with this
value.

4. Results and Analysis
In this section we analyze results from the two MIREX 2006
tasks that our algorithms competed in. More information
about the tasks and evaluation methods can be found through
task descriptions in the MIREX Wiki. Abstracts from all the
participants are published in the result pages. [3, 4]

4.1. Symbolic Melodic Similarity
Our algorithms were at the tail of the competition in all the
Symbolic Melodic Similarity tasks (see Figures 3, 4 and 5).
Comparing the results of our two P3 variations and look-
ing at the results from last year might suggest that there was
a problem within our implementation this year that did not
surface as strongly last time. The difference may certainly
come from different task setup, but since the RISM A/II col-
lection was used both times and other algorithms performed
much better, we might have mistuned something.

Figure 3. Summary of MIREX 2006 Symbolic Melodic Simi-
larity Monophonic (RISM) task results. The teams and algo-
rithms are FH: Pascal Ferraro and Pierre Hanna, NM1: our
original P3 algorithm, NM2: scaled P3, RT: Rainer Typke,
Frans Wiering and Remco C. Veltkamp, KF: Klaus Frieler
and AU: Alexandra Uitdenbogerd. We thank Rainer Typke
for providing these graphs.

Figure 4. SMS Mixed Polyphonic task results.

Figure 5. SMS Karaoke Polyphonic task results.

One possible source of problems with the RISM data
is the normalization of common time in a match which in
our current implementation allows incipits with only a few
notes to match the queries better than longer incipits that hu-
mans would consider best matches. We first used this nor-
malization scheme last year, when it seemed to work better
than simply dividing the common time by pattern duration.
After the MIREX 2006 results were published, we com-
pared these two normalization approaches with the evalu-
ation data, and there is a clear difference in favor of the sim-
ple normalization by pattern duration. This only affects the
results when matching short queries in a database of poten-
tially even shorter incipits, such as the RISM collection. For
straight similarity comparison of two songs, the normaliza-
tion we used is a valid approach.

The poor performance of our submissions in the poly-
phonic SMS tasks (Figures 4 and 5) was most likely caused
by our decision to ignore all track and channel information
available in the MIDI files in the algorithm implementation.
With the track information in place, the task can be reduced
to almost monophonic similarity comparison where simple
dynamic programming methods work well. Of course it
could be argued that in the real world the track information
is usually available, but then again, there are cases where



XW1 XW2 RJ RL NM CS1 RT2 CS3 AU2 CS2 AU1 RT1

Task I (MRR) 0.926 0.900 0.883 0.800 0.688 0.568 0.390 0.348 0.288 0.283 0.205 0.196

Task II (Mean Prec.) - - 0.926 - 0.722 0.587 0.401 0.415 0.238 0.649 0.163 0.468

Table 1. Query by Singing/Humming task results. We refer the reader to the task description for more information about the test
collections and the evaluation method [4]. The teams are AU: Alexandra Uitdenbogerd, CS: Christian Sailer, FH: Pascal Ferraro
and Pierre Hanna, NM: us with the ES algorithm, RJ: J.-S. Roger Jang, Nien-Jung Lee and Chao-Ling Hsu, RL: Ernesto Lopez and
Martin Rocamora, RT: Rainer Typke, Frans Wiering and Remco C. Veltkamp and XW: Xiao Wu and Ming Li.

the searched pattern is not constrained to one track – here it
was in majority of the relevant files considering the queries
used. There are also sources such as automatic polyphonic
transcriptions of audio recordings, where the instrument in-
formation may not even be available at all.

The P3 algorithm is computationally efficient but it does
not use any indexing, so searching large databases can be
slow. In MIREX 2005, parsing the short MIDI incipits prob-
ably took most of the time the algorithm was measured to
run for and therefore the execution time of the actual algo-
rithm was not clear. Overall it was the fastest one along
with our DP algorithm. This year there were much longer
pieces of music in the polyphonic task and the indexing and
query execution times were separated for those algorithms
that support indexing. It is clear that an indexing scheme is
necessary in most applications that require searching mas-
sive music collections, even though fast on-line algorithms
have their uses as well. Indexing polyphonic music fully
and efficiently is still a big challenge.

4.2. Query by Singing/Humming
The ES algorithm that we submitted to the QBSH task is an
experimental brute force implementation of ideas that may
be useful in symbolic melodic similarity in general when
implemented more efficiently. Currently it is too slow for
polyphonic matching with patterns longer than 10-20 notes,
although it could be used for n-gram searches or index con-
struction. The results from QBSH (see Table 1) are quite
encouraging since this algorithm performed fairly well even
with the imperfect MIDI queries supplied, while the other
purely symbolic algorithms (AU, FH and RT) had more dif-
ficulties with them.

Overall, these two MIREX tasks were a teaching expe-
rience on music information retrieval from large databases.
We will have to consider richer approaches for weighing the
potentially matching notes, like the ES algorithm does, but
hopefully with much lower time complexity. If that proves
to be impossible or difficult, we could use a multi-level ap-
proach where a simple and fast algorithm retrieves a long
list of potential matches and then a slower algorithm filters
those results to pick the best matches. A similar approach
might be applicable to polyphonic indexing.

5. Acknowledgments
Our best thanks to IMIRSEL for organizing MIREX 2006,
to Rainer Typke and Anna Pienimäki for their work on the
Symbolic Melodic Similarity task and to J.-S. Roger Jang
and J. Stephen Downie for the Query by Singing/Humming
task. We much appreciate the opportunity to compare vari-
ous music information retrieval methods in a controlled en-
vironment and hope that MIREX will continue for years to
come.

References

[1] K. Lemström, V. Mäkinen, A. Pienimäki, M. Turkia and E.
Ukkonen, “The C-BRAHMS Project,” in ISMIR 2003 Fourth
Int. Conf. on Music Inf. Retr. Proc., Oct. 2003, pp 237-238,
See: http://www.cs.helsinki.fi/group/cbrahms/

[2] E. Ukkonen, K. Lemström and V. Mäkinen, “Sweepline the
Music!.” Computer Science in Perspective — Essays dedi-
cated to Thomas Ottmann, vol 2598, pp 330-342, Springer-
Verlag, 2003

[3] R. Typke and Anna Pienimäki, “Symbolic Melodic Similar-
ity,” [Web site] 2006, Available: http://www.music-ir.org/
mirex2006/index.php/Symbolic Melodic Similarity

[4] J. S. Downie, J.-S. Roger Jang and R. Typke, “Query
by Singing/Humming,” [Web site] 2006, Available:
http://www.music-ir.org/mirex2006/index.php/
QBSH: Query-by-Singing/Humming


