
MIREX SYMBOLIC MELODIC SIMILARITY
AND QUERY BY SINGING/HUMMING

Rainer Typke
Universiteit Utrecht

Padualaan 14
3584 CH Utrecht, Netherlands

rainer.typke@musipedia.org

Frans Wiering
Universiteit Utrecht

Padualaan 14
3584 CH Utrecht, Netherlands
frans.wiering@cs.uu.nl

Remco C. Veltkamp
Universiteit Utrecht

Padualaan 14
3584 CH Utrecht, Netherlands
remco.veltkamp@cs.uu.nl

Abstract
This submission to the Music Information Retrieval Eval-

uation eXchange in the Symbolic Melodic Similarity task
uses ideas from the system that used the Earth Mover’s Dis-
tance (EMD) in MIREX 2005. The total weight sums are
normalized before applying the EMD, which makes it pos-
sible to use a vantage index. A novel way of segmenting
is used. Response times are shortened from 14 hours for
searching 581 short monophonic incipits to 3 seconds for
searching 1000 complete polyphonic pieces of music. This
speedup made it possible to put more effort into searching
accurately by searching multiple segment sizes at the same
time. Therefore, the new method should not only be faster
but also more effective.

We submit this algorithm not only for the Sym-
bolic Melodic Similarity task, but also for Query by
Singing/Humming. For the latter, we rely on the MIDI files
provided by J.-S. Roger Jang (5z�) instead of splitting
the given pitch vectors into notes ourselves or working with
the wave files.

Keywords: MIREX, symbolic melodic similarity, query by
humming/singing.

1. Tasks
At the MIREX competition1 , algorithms from different re-
searchers are compared by letting them solve the same tasks,
using the same data. This extended abstract describes a sub-
mission to two out of the nine tasks at MIREX 2006.

1.1. Symbolic Melodic Similarity
The task is to retrieve MIDI files that contain material which
is melodically similar to a given MIDI query. Half the queries
are quantized in rhythm and pitch, and half are only quan-
tized in pitch but not in rhythm. The latter half was created
by singing melodies.

1 MIREX 2006:http://www.music-ir.org/mirex2006

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
c© 2006 University of Victoria

There are three subtasks that differ mainly in the collec-
tion of data to be searched:

• Approximately 16,000 incipits from the UK subset of
the RISM collection, almost exclusively monophonic.
Six queries (three of them quantized).

• 1000 polyphonic Karaoke files. Five queries (two of
them quantized; the three sung queries include two
versions of the same melody).

• 10,000 randomly chosen MIDI files that were har-
vested from the Web, most of them polyphonic. Six
queries (three of them quantized).

Due to the size of the collections, no ground truth was
known in advance. From every participating algorithm, the
top ten matches are put into a pool, and human graders judge
the relevance.

1.2. Query by Singing/Humming

The Query by Singing/Humming task is split into two sub-
tasks which are strongly influenced by the character of avail-
able data. For a collection of 48 MIDI files containing quan-
tized melodies, 2719 sung versions are available as Wave
files. For every recording, a pitch vector and a MIDI file
were derived. Participants can choose whether to use the
audio, pitch vector or MIDI files for answering queries.

1.2.1. Subtask 1: Known-Item Retrieval Task

Based on Prof. Jang’s original idea to test for the ability to
find the “ground-truth” needle in a collection “haystack”.

• Test database: 48 ground-truth MIDIs +∼ 2000 Es-
sen Collection MIDI noise files.

• Queries: 2719 sung queries.

• Evaluation: Mean Reciprocal rank, over top X re-
turns, of the “know-item” ground-truth file for each
sung query

1.2.2. Subtask 2: Variants Retrieval Task

Based on Prof. Downie’s idea that queries are variants of
ground-truth.



• Test database: 48 ground truth MIDIs +∼ 2000 Essen
MIDI noise files + 2719 sung queries.

• Queries: 2719 sung queries + 48 ground truth MIDI
files.

• Evaluation: Classic precision and recall over X top
returns.

2. Indexing
2.1. Splitting polyphonic files into voices

As a preparation for indexing, every MIDI file is split into
channels and tracks. It is assumed that every voice is stored
in either its own track or channel. In a second step, a skyline
algorithm is applied to make each of these extracted voices
monophonic.

Even in cases where a voice jumps back and forth be-
tween channels or tracks, it can still be searched as long
as it stays in one channel or track for at least the minimum
segment length (see the next section for a description of seg-
menting).

2.2. Segmenting

Depending on the collection to be searched, the monophonic
voices are split into overlapping segments of varying lengths.
If the index size is not a limiting factor (because the col-
lection size is sufficiently small or the computer to be used
has enough memory), the segment sizes vary from 5 to 16
consecutive notes. For the collection of 10,000 MIDI files,
space on the testing machines was so tight that we could
only create segments of sizes 5, 6, and 7. At every note in
the voice, a segment of every size begins (unless there are
fewer notes left in the piece than necessary for creating a
segment of the desired length).

Note that in both cases, the space complexity isO(N),
whereN is the total number of notes in all pieces to be in-
dexed.

2.3. Vantage indexing

For every segment, the distance to each of a small, fixed set
of vantage objects [3] is calculated. As distance measure,
the “Proportional Transportation Distance” [5] is used (this
is the “Earth Mover’s Distance”, preceded by a weight nor-
malization such that both weighted point sets have the same
total weight).

Later, to answer queries with the vantage index, the dis-
tances between the query and each vantage object are cal-
culated, and objects with similar distances to the vantage
objects are retrieved from the database. This can be done
efficiently with range queries that are supported by B-trees,
and it does not involve any expensive EMD calculations ex-
cept for the comparisons of the query with the small, fixed
set of vantage objects.

3. Searching
3.1. Searching an index with many segment lengths
If the index contains segments of length 5 to 16, the query
is truncated to 16 notes (if it is longer), and all segments are
searched for this possibly truncated query using the vantage
index [3]. By not only searching segments with the same
length as the query, added or dropped notes, as well as grace
notes and other embellishments do not necessarily lead to
mismatches but just increase the distance a bit.

In a second step, for the top 50 returned items, the real
distance is calculated instead of the estimate that is basedon
the vantage index. Finally, the top 10 items demanded in the
task description are returned.

3.2. Searching an index with just three different seg-
ment lengths
If the index only contains segments of length 5, 6, and 7,
the query is cut into segments of length 6. For each query
segment, the vantage index is searched. Again, for the top
50 returned segments, the real distances are calculated (for
each query segment). Finally, these partial results are com-
bined as described in [5]. That is, an optimum combination
of query segments is found that match a piece in the same
relative positions as their positions within the query, such
that the segments’ average distance is minimized and the
coverage of the query is maximized.

3.3. Considerations for matching documents that are
shorter than the query
For the RISM UK collection of musical incipits, one might
want to retrieve documents that are shorter than the query,
while this case is very unlikely for a collection consistingof
complete pieces. To support this possibility for the RISM
subtask, even though the incipits are split into segments of
5 to 16 consecutive notes, the query is not just capped at 16
notes as described above, but split into segments of varying
sizes from 5 consecutive notes up to either 16 or the length
of the query, whatever is lower. That way, shorter incipits
can be matched to parts of the query, but the whole query
can still be matched to longer incipits in one comparison.

Currently, perfect matches of a whole incipit that is
shorter than the query lead to a distance of zero, and so do
perfect matches of the whole query with parts of a longer
incipit. Assigning different distances (a lower distance to
the latter case, where more notes match), would be an im-
provement, but one would need to investigate how big such
a difference should be in order to agree with human ideas of
similarity.

3.4. The Query by Singing/Humming task
We submit our algorithm not only for Symbolic Melodic
Similarity but also for the Query by Singing/Humming task.
However, we do not analyze the wave or pitch vector files,
but instead work only with the MIDI files provided by J.-S.
Roger Jang along with the collection of queries. By doing



Figure 1. Task I: RISM Overall Summary. See Section 4.1.2
for an explanation of the measures. The methods are: RT -
the method described in this paper; FH - an editing distance
for quotiented trees by Pascal Ferraro and Pierre Hanna [2],
KF is a hybrid distance measure by Klaus Frieler and Daniel
Müllensiefen, AU is Alexandra Uitdenbogerd’s Start-Match
Alignment technique, and NM is the geometric ”P3” algorithm
by Kjell Lemstr öm, Niko Mikkil ä, Veli Mäkinen and Esko
Ukkonen. For a more detailed description of these methods,
see the MIREX abstracts, available from http://www.music-
ir.org/mirex2006/index.php/SymbolicMelodic Similarity Results

so, we avoid the need to change the algorithm at all, but any
error in his conversion from Wave to MIDI will reduce our
performance.

For this task, we submit the algorithm with both indexing
variants – with segments of lengths 5 to 16 and with seg-
ments of lengths 5, 6, and 7. We treat the queries the same
way as for the Symbolic Melodic Similarity task, that is, if
we have many segment lengths, we cut the query at 16 notes,
while for just three different segment lengths, we segment
the query into segments of length 6. Since it is known that
in Jang’s collection, the queries match the database items
only at the beginning, we index only the first 25 notes of
every item.

The variant with fewer segment lengths needs less space
for the index (only three segments start at every note instead
of eleven), but requires more computing time for answering
queries since there are multiple segment searches, and their
results need to be consolidated into one overall result.

4. Results, Analysis
4.1. Symbolic Melodic Similarity
4.1.1. Building a ranked list from relevance scores

The raw ground truth data consisted of a rough and a fine
relevance score for every item that was returned by an algo-
rithm. For the rough score, a scale of “very similar”, “some-
what similar”, and “not similar” was used, while the fine
score was just a number between 0 and 10. For the poly-
phonic tasks, where algorithms returned excerpts of MIDI
files but not whole MIDI files, separate relevance scores

Figure 2. Task IIa: Karaoke Overall Summary

were collected for each excerpt, even if there were multi-
ple excerpts from the same MIDI file.

For some measures, an ordered list of relevant items is
necessary. These ordered lists were created as follows from
the collected relevance scores:

• Calculate average scores for every MIDI file; these
averages were taken from three human graders if a
MIDI file was returned by only one algorithm, or by
a multiple of three people if multiple algorithms re-
turned the same polyphonic MIDI file.

• For each query, order the matches first by the rough
and, in case of ties, by the fine score.

• Group together matches with the same average rough
score.

• Only include items with average rough scores of bet-
ter than “somewhat similar”.

• If the resulting list is longer than 10, remove whole
groups at the end until at most 10 items remain; there
was one exception where the top group had 11 “very
similar” items.

4.1.2. Measures
The following measures were used (these abbreviations are
used in Figures 1, 2, and 3):

• ADR = Average Dynamic Recall [4].

• NRGB = Normalized Recall at Group Boundaries.

• AP = Average Precision (non-interpolated).

• PND = Precision at N Documents.

• Fine = Sum of fine-grained human similarity deci-
sions (0-10).

• PSum = Sum of human broad similarity decisions:
NS=0, SS=1, VS=2.



Figure 3. Task IIb: Mixed Polyphonic Overall Summary

• WCsum = ’World Cup’ scoring: NS=0, SS=1, VS=3
(rewards “very similar”).

• SDsum = ’Stephen Downie’ scoring: NS=0, SS=1,
VS=4 (strongly rewards “very similar”).

• Greater0 = NS=0, SS=1, VS=1 (binary relevance
judgement).

• Greater1 = NS=0, SS=0, VS=1 (binary relevance
judgement using only “very similar”).

All measures are normalized such that they lie in the range
from 0 to 1.

4.1.3. Monophonic Task

For the monophonic task, there were no significant
performance differences between our method and the
editing distance for quotiented trees by Pascal Fer-
raro and Pierre Hanna [2], [1]. When looking
at the actual result lists – they are available at
http://rainer.typke.org/mirex06.0.html – the main difference
between the results of these two methods seems to be that
the latter is more likely to retrieve rather short matches
(compare, for example, http://rainer.typke.org/qr3-fh.0.html
and http://rainer.typke.org/qr3-rt.0.html). In some cases,
this might have lead to a lower average precision or av-
erage dynamic recall, like for example in the case of
http://rainer.typke.org/qr6-fh.0.html, where short matches
pushed nice longer ones down to lower ranks.

The other methods performed worse than ours and Fer-
raro’s/Hanna’s, no matter which measure is used.

4.1.4. Polyphonic Tasks

For both polyphonic tasks, our method outperforms the
other methods.

Besides the obvious difference in the number of notes
that can sound at the same time, the polyphonic collections
also differ in other ways from the monophonic RISM col-
lection:

• Both polyphonic collections were random sets of files
that were harvested from the Web. Because of this,
the encoding quality was not as homogeneous as for
the RISM collection. Some files in the polyphonic
collection were not syntactically correct MIDI files.

• While the RISM collection was created from
plaine&easie code and therefore rhythmically quan-
tized, the polyphonic collections contained both quan-
tized music and renditions of performances, where
neither onset times nor note durations were exactly
the same as what one would find in a written score.

When looking at Figures 2 and 3, it is very noticeable
that the six rightmost measures, which were not based on
the ranked lists described in Section 4.1.1, indicate a much
worse performance for the Karaoke task for all algorithms.
The reason is that the Karaoke collection was much smaller
(1000 items instead of the 10,000 items in the mixed collec-
tion) and therefore contained fewer good matches to begin
with. Even an ideal algorithm can therefore not reach a score
of 1 for measures such as “Fine” for the Karaoke collection.
The four measures on the left side compare the algorithms’
outputs with the ground truth lists.

4.2. Query by Singing/Humming
No algorithm that relied on the provided MIDI files turned
out to be very successful. These MIDI files contained many
incorrectly recognized additional notes with more or less
random pitches.The most successful algorithm that used the
MIDI files provided by Jang, NM, performed an exhaustive
depth-first search trying to scale the pattern note-by-noteto
fit the song, with costs applied to local time-scaling, note
duration changes and pitch-shifting (note that this is not the
same algorithm as the “symbolic” NM algorithm). Our al-
gorithm performed relatively poorly because it looked for
matches forall query notes, including the random added
notes, without the possibility of reducing the importance of
individual query notes. The NM algorithm is able to se-
lectively ignore query notes that do not fit any note in a
matching piece. For a similar effect with our method, we
would need to skip the weight normalization step and there-
fore work with a pure EMD. However, this would reduce
the effectiveness of vantage indexing – it would remove the
guarantee that indexing does not lead to false negatives.

Many of the successful algorithms used symbolic ap-
proaches; for example, Xiao Wu and Ming Li use a tran-
scription to notes for filtering out candidates for matches,
followed by a final scoring on the frame level. Christian
Sailer as well as Ernesto Lopez and Martı́n Rocamora do all
matching in the symbolic domain after transcribing the au-
dio signal to notes. An important reason for such hybrid ap-
proaches outperforming our method was that they used their
own elaborate methods for transcribing the audio signal into
notes.



Task I (MPR) Task II (Mean Precision) Uses audio or MIDI

XW1 (Xiao Wu and
Ming Li)

0.926 no entry audio

XW2 0.900 no entry audio
RJ (Roger Jang and
Nien-Jung Lee

0.883 0.926 audio

RL (Ernesto Lopez
and Martı́n Ro-
camora)

0.800 no entry audio

NM 0.688 0.722 MIDI
CS1 (Christian
Sailer)

0.568 0.587 audio

RT2 0.390 0.401 MIDI
CS3 0.348 0.415 audio
AU2 0.288 0.238 MIDI
CS2 0.283 0.649 audio
FH 0.218 0.309 MIDI
AU1 0.205 0.163 MIDI
RT1 0.196 0.468 MIDI

Table 1. Overall results for QBSH. NM, RT, AU, and FH use Jang’s MIDI files, while the other methods do their own note transcrip-
tion (except for RJ’s pure audio approach). RT2 segments thequeries, while RT1 does not. There seems to be a strong correlation
between using the provided MIDI files and poor overall performance. For detailed descriptions of the various methods, see the
MIREX abstracts at http://www.music-ir.org/mirex2006/i ndex.php/QBSH: Query-by-Singing/Humming Results

Maybe one can learn from this experience that sym-
bolic approaches can be valuable for searching large au-
dio databases because they can make searches very efficient
without necessarily ruining the quality of results, especially
if the last scoring step is again done in the audio domain and
therefore avoids the problems that note transcription intro-
duces. After reducing the number of candidates for matches
by using an efficient symbolic method, one can afford more
expensive, but effective audio analyses since they only need
to be done for a small number of items.

5. Acknowledgments

Many thanks to IMIRSEL for the huge amount of effort
spent in running the evaluation, to Anna Pienimäki for co-
leading the Symbolic Melodic Similarity task and creating
the queries, to Maarten Grachten for his help with convert-
ing RISM incipits to MIDI, to RISM UK for allowing us to
use their incipits, and to Niall O’Driscoll from Alexa for
providing Musipedia.org with free access to Alexa’s web
search product (the test collection of polyphonic MIDI files
is a subset of the Musipedia web search data set). For
the Query by Singing/Humming task, we are grateful for
Stephen Downie and J.-S. Roger Jang (5z�) leading the
task, and for the data collection of wave files, pitch vectors,
and MIDI files provided by the latter.

References

[1] P. Ferraro and C. Godin. “An Edit Distance Between Quo-
tiented Trees”,Algorithmica, 36:1–39, 2003.

[2] P. Ferraro and P. Hanna. “Symbolic Melodic Similarity,”
MIREX 2006 abstract.

[3] R. H. van Leuken, R. C. Veltkamp, and R. Typke. “Selecting
vantage objects for similarity indexing,”International Con-
ference on Pattern Recognition (ICPR)2006, Hong Kong.

[4] R. Typke, R. C. Veltkamp, and F. Wiering. “A measure for
evaluating retrieval techniques based on partially ordered
ground truth lists”,International Conference on Multimedia
& Expo (ICME)2006, Toronto, Canada.

[5] R. Typke, F. Wiering, and R. C. Veltkamp. “Transportation
distances and human perception of melodic similarity,”ES-
COM Musicæ Scientiæ (to appear).


