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ABSTRACT

A triangular operator is an aggregation operator that can
be understood as a generalization of a logical connective.
Although weighted means are very often used for combin-
ing audio similarity measures, theoretical considerations
suggest that it might be better to use a triangular operator
instead. With the MIREX 2007 submissions described in
this paper, we investigate if triangular operators really are
suitable for combining audio similarity measures.

1 INTRODUCTION

Generally speaking, aggregation is the task of intelligently
combining several values to one value. An aggregation
operator is a mathematical object that can be used for this
task. In the past few years, these mathematical objects
have been studied extensively by many researchers in the
fuzzy set community, which has led to a wide plethora of
fuzzy aggregation operators. Since audio similarity mea-
sures can be modelled by binary fuzzy relations, we can
use such a fuzzy aggregation operator to combine them.
In this paper, we investigate the usage of a specific class
of fuzzy aggregation operators for combining audio simi-
larity measures, namely, the class of triangular operators.

2 AUDIO SIMILARITY MEASURES

A fuzzy set A in a universe U is a U → [0, 1] mapping that
associates with each element u ∈ U a degree of member-
ship A(u). The higher A(u), the more u is a member of
A. In particular, u belongs fully to A when A(u) = 1,
and A(u) = 0 implies that u is not at all an element of
A. A (binary) fuzzy relation R on U is a fuzzy set in
U × U . For a fuzzy relation M on the set of all possible
audio fragments, we can interpret the membership degree
M(a, b) of a pair of audio fragments (a, b) as the degree to
which a and b are similar. The higher M(a, b), the more
a and b are considered similar. Formally defining audio
similarity measures in this way has the advantage that the
extensive range of fuzzy aggregation operators available
in the literature can then be used for combining different
measures. In the remainder of this section, we describe
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two audio similarity measures that are both defined as a
fuzzy relation. Combining these measures makes perfect
sense because the first one is timbre-related, while the sec-
ond one is related to the rhythm.

2.1 Timbre-related

Mel-frequency cepstral coefficients (MFCCs) are a short-
time spectral decomposition of an audio signal that con-
veys the general frequency characteristics important to hu-
man hearing. In [3], Mandel and Ellis proposed a sim-
ple but effective MFCCs-based approach to determine the
similarity between two audio fragments. They use a sin-
gle Gaussian to model the distribution of the MFCCs com-
puted for subsequent segments of an audio fragment, and
they calculate the Kullback-Leibler divergence between
two distributions to determine the similarity between the
corresponding audio fragments. In [6], the distances ob-
tained in this way were rescaled in order to improve the re-
sults when combining them with other information: d′ =
− exp(−d/450), with d the symmetric Kullback-Leibler
divergence. Since d′ ∈ [−1, 0[, we can interpret −d′ as
a membership degree of a fuzzy relation on the set of all
audio fragments. The fuzzy relation SG obtained by in-
terpreting all rescaled distances in this way is, to some
extent, related to the perceived timbre, i.e., SG(a, b) is
usually high when the timbres of a and b are similar.

2.2 Rhythm-related

The fluctuation pattern (FP) [6, 7] of an audio signal de-
scribes the loudness fluctuations for each frequency band.
By taking the median of the FPs computed for subsequent
segments of an audio fragment, we obtain a single FP
that represents this fragment. The similarity between two
audio fragments can then be determined by interpreting
the corresponding FPs as vectors and calculating the Eu-
clidean distance between these vectors [6]. In this paper,
however, we use the cosine similarity measure instead of
the Euclidean distance because the experimental observa-
tions in [1] indicate that it is more suitable for this task.
Moreover, the cosine similarity measure has the advantage
that it generates values that can directly be interpreted as
membership degrees of a fuzzy relation on the set of all
audio fragments. We use the notation FP for this fuzzy
relation, which is, to some extent, related to the perceived



rhythm, i.e., FP(a, b) is usually high when a and b are
rhythmically similar.

3 COMBINED AUDIO SIMILARITY MEASURES

In the context of fuzzy set theory, an aggregation operator
of arity n ∈ N is an increasing [0, 1]n → [0, 1] mapping
H such that H(0, 0, . . . , 0) = 0 and H(1, 1, . . . , 1) = 1.
For this paper, we restrict ourselves to binary aggregation
operators, i.e., aggregation operators of arity 2. The point-
wise extension H of a binary aggregation operator H can
be used to combine two fuzzy sets A and B in a universe
U : H(A,B)(u) = H(A(u), B(u)), for all u ∈ U . In
particular, we can use the pointwise extension of a binary
aggregation operatorH to combine SG and FP into a sin-
gle audio similarity measure H(SG ,FP).

3.1 Using weighted means

For λ ∈ [0, 1], the convex linear combinations (1−λ)·x+
λ · y of two values x, y ∈ [0, 1] give rise to the following
operator: Kλ(x, y) = (1−λ)·x+λ·y, for all x, y ∈ [0, 1].
This operator is a binary aggregation operator. In fact,
it is equivalent with the binary form of the well-known
weighted (arithmetic) mean. Convex linear combinations
were used to combine audio similarity measures in [6].
However, the author made the following remark: “There
is a conceptual problem with the linear combination: A
human listener does not compute a weighted sum of the
similarities with respect to different aspects. In contrast,
a single aspect which is similar is sufficient to consider
pieces to be similar”. By using a triangular operator in-
stead of a weighted mean, we can get rid of this problem.

3.2 Using triangular operators

An associative and commutative binary aggregation oper-
ator T is called a triangular norm (t-norm) [4] if is sat-
isfies T (x, 1) = x for all x ∈ [0, 1]. Since T (0, 0) =
T (0, 1) = T (1, 0) = 0 and T (1, 1) = 1 hold for such
a mapping T , a t-norm can be understood as a general-
ization of the logical conjunction from the two-valued set
{0, 1} to the whole unit interval [0, 1]. Consequently, t-
norms can be used to generalize intersection from ordi-
nary to fuzzy sets, which explains why T (A,B) is usually
written as A∩TB. The logical disjunction can be general-
ized to [0, 1] by means of a triangular conorm (t-conorm),
i.e., an associative and commutative binary aggregation
operator S that satisfies S(x, 0) = x for all x ∈ [0, 1].
Usually, the notation A ∪SB is used instead of S(A,B).

T-norms and t-conorms are collectively referred to as
triangular operators (t-operators). Since the inequalities
T (x, y) ≤ Kλ(x, y) and Kλ(x, y) ≤ S(x, y) hold for all
x, y, λ ∈ [0, 1] when T is a t-norm and S is a t-conorm,
all t-operators return either lower or higher values than
weighted means. The minimum TM and the maximum SM

are the most popular t-operators, but these operators are
noninteractive [2], i.e., a modification of x or y does not
necessarily imply an alteration of TM(x, y) or SM(x, y).

We avoid this problem by using the algebraic product TP

and the probabilistic sum SP. These interactive t-operators
are defined as TP(x, y) = x·y and SP(x, y) = x+y−x·y,
for all x, y ∈ [0, 1].

Our second MIREX submission (BK2) implements the
combined audio similarity measure SP(SG ,FP). This
measure considers two audio fragments similar when they
are timbrally or rhythmically similar. Hence, similarity
of a single aspect is sufficient to consider two fragments
similar, and thus this combined measure solves the above-
mentioned conceptual problem. Considering two audio
fragments similar when they are similar with respect to
all aspects, i.e., when they are both timbrally and rhyth-
mically similar, is an alternative approach that can also
be regarded closer to human reasoning than computing a
weighted sum. This is precisely what the combined audio
similarity measure TP(SG ,FP) does. Our first submis-
sion (BK1) is an implementation of this measure.

4 DISCUSSION OF RESULTS

The algorithms submitted to the MIREX 2007 Audio Mu-
sic Similarity and Retrieval task were run on a collection
of 7000 songs. For each of the 10 considered genres, 10
songs were randomly selected as queries, and the 5 most
similar songs were determined for each query (after fil-
tering out the songs by the same artist). Then, for each
query, the returned results (candidates) from all submis-
sions were grouped and evaluated by human graders. A
single grader evaluated each individual set of query/candi-
date pairs by assigning a score on a scale from 0 to 10
(with a resolution of 0.1) to each pair. A global score
was then computed for each query/algorithm pair by tak-
ing the mean of the similarity ratings associated with it.
Figure 1 was obtained by applying a Friedman test [5] to
these global scores.

First of all, we notice that BK2 performs significantly
worse than the other submissions. This suggests that hu-
mans do not necessarily consider two songs similar when
they are similar with respect to a single aspect. We should,
however, also take some practical issues into account here.
For instance, BK2 is very sensitive to false positives gen-
erated by one of its submeasures. When either SG or
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Figure 1. Evaluation results using the Friedman test. The
circles mark the mean ranks, and the lines represent the
significance boundaries.



FP generates a false positive, e.g., two songs are consid-
ered rhythmically similar by FP while their rhythms re-
ally are very different, then BK2 will always consider the
two songs similar, independent of the value returned by
the other submeasure. Hence, it is quite likely that BK2
generated a substantial amount of false positives, which is
an important problem because false positives strongly in-
fluence the conducted evaluation method. Another prac-
tical issue is that SG and FP are only to some extent
related to the perceived timbre and rhythm, respectively.
A generalized disjunction might perform better when the
measures that it combines are more closely related to a
particular aspect of human perception.

Furthermore, Figure 1 indicates that only three submis-
sions perform significantly better than BK1. Since BK1 is
a very simple audio similarity measure that can still be
enhanced and optimized in many ways, this is a rather
good result. Hence, a generalized conjunction appears to
be quite suitable for combining the considered audio sim-
ilarity measures.

5 CONCLUSIONS AND FUTURE WORK

Inspired by the conceptual problem mentioned in [6], we
investigated the usage of triangular operators, i.e., gener-
alized logical connectives, for combining audio similarity
measures by submitting two simple combined measures
to the MIREX 2007 Audio Music Similarity and Retrieval
task. Our first submission combines the audio similarity
measures SG and FP using a generalized conjunction,
while the second one uses a generalized disjunction to
combine these measures. Although both approaches are
appealing and intuitive from a conceptual point of view,
the one based on a generalized conjunction proved to per-
form significantly better in practice.

Both our submissions can be enhanced in many ways.
For instance, it might be possible to improve the perfor-
mance by considering more than two submeasures, or by
using weighted versions of the triangular operators [9].
Moreover, optimizations similar to the ones described in
[8] could also lead to significant improvements. Since
there is so much room for enhancement and optimization,
the fact that only three of the submitted algorithms per-
form significantly better than our conjunction-based sub-
mission suggests that it might be worthwhile to further
investigate the usage of generalized conjunctions for com-
bining audio similarity measures.
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