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ABSTRACT

This paper presents a variation on the theme of using string
alignment for MIR in the context of cover song identifi-
cation in audio collections. Here, the strings are derived
from audio by means of HMM-based chord estimation.
The characteristics of the cover-song ID problem and the
nature of common chord estimation errors are carefully
considered. As a result strategies are proposed and sys-
tematically evaluated for key shifting, the cost of gap in-
sertions and character swaps in string alignment, and the
use of a beat-synchronous feature set. Results support
the view that string alignment, as a mechanism for audio-
based retrieval, cannot be oblivious to the problems of ro-
bustly estimating musically-meaningful data from audio.

1 INTRODUCTION

The term musical similarity can be used to imply a rela-
tionship between songs that goes beyond texture, genre or
artist, and that is more akin to purely musicological com-
parisons between songs, e.g. in terms of their melody,
harmony and/or rhythm. In this context, cover song iden-
tification in popular music can be seen as a good, albeit
limited, test of the ability to model musical similarity.
The task of identifying cover songs poses many difficul-
ties for audio-based music retrieval since renditions are
often quite different from the original in one or many at-
tributes including instrumentation, key or genre to name a
few.
In this paper we propose an approach to cover song iden-
tification based on the use of string alignment for the scor-
ing of approximate chord sequences. These sequences are
extracted from audio using chroma features and hidden
Markov Models [2]. They are approximate because chord
estimation from audio is never 100% accurate. Song se-
quences in a collection are ranked according to the score
of their alignment with a query sequence. The use of ap-
proximate string matching is favored as the sequential or-
dering of events in the signal is taken into account. We
argue that in order to maximize retrieval results, one has
to consider not only the key or tempo differences between
cover song sequences, but also the ways in which these
sequences approximate (or not) the songs they represent.
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1.1 Previous Work and Motivation

There is a long history of using approximate string match-
ing in Music Information Retrieval. A notable example in
the symbolic domain is the use of string alignment for the
characterization of melodic similarity in both monophonic
and polyphonic databases [9, 13]. This is unsurprising if
we consider that melodies are well posed to be character-
ized as sequences of symbols representing, for example,
pitches or intervals.
This reasoning is also behind early attempts to incorpo-
rate audio into MIR systems in the context of Query by
Humming (QBH). This problem is largely defined as one
of matching between a monophonic audio query and a
symbolic and often polyphonic database. The transfor-
mation of signals into strings can be achieved using well-
known signal processing algorithms, thus sequence align-
ment is featured prominently in QBH research ([1] is a
recent example). However, audio-based analysis, even
in the monophonic case, adds an extra layer of complex-
ity that is bound to negatively impact the performance of
these systems [12]. This is all the more acute for the case
when polyphonic audio signals, the format in which most
music is available, are used both as queries and as docu-
ments in the database. In [10] the cosine distance is used
between the most repeated melodic fragments of songs,
represented as key-invariant and beat-synchronous spec-
tral lines, to measure pairwise similarity. This approach
uses cover-song identification as a test of melodic simi-
larity in audio collections. While showing great promise,
it suffers from the great difficulties of robustly estimating
melody from complex signals.
Alternatively, music similarity can be characterized by har-
monic, rather than melodic, content using so-called chroma
features, or pitch class profiles. In [11], a successful sys-
tem is presented for the identification of excerpts (10-30s)
in orchestral music. The method relies on short-time statis-
tics, quantization and resampling of chroma features in or-
der to find similar excerpts despite tempo variations. In [6]
a cover song ID system is proposed that cross-correlates
beat-synchronous chroma features to characterize pairwise
similarity. Key invariance is achieved by performing all
12 shifted versions of the cross-correlation. This approach
performed best on the 2006 MIREX cover song identifi-
cation task.
An interesting variation on the theme of using chroma fea-



tures for characterizing music similarity is proposed in [3].
In this work, chroma features are collapsed into string se-
quences using vector quantization (VQ) and best retrieval
is achieved by calculating the string-edit distance between
these sequences. Success is demonstrated for finding re-
peated patterns within a song. This paper also provides a
strong argumentation in favor of using string-based meth-
ods that take into account the ordering of events in the
signal, an issue which is consistently ignored in models
for texture-based similarity. However, the lack of inter-
pretability of the VQ-produced strings encourages the use
of metrics that consider all character swaps to be the same,
a strategy that we purposefully avoid in this paper. Al-
ternatively, [8] uses strings representing chord sequences.
This approach to cover song ID, on which our work is
based, relies on the calculation of chord sequences by means
of HMM-based analysis (supervised in their case, unsu-
pervised in ours) and the computation of pairwise simi-
larity on key-transposed sequences using DTW. While re-
sults are promising, this work fails to justify why the cho-
sen scoring methodology is a good fit to the nature of the
problem and to the data it uses. This, in turn, branches
out into other fundamental questions: How does this ap-
proach cope with the inexactitude of the sequence estima-
tion? What is the impact of attempting to introduce key
invariance? Is there a purpose for introducing beat-based
rhythmic invariance (as proposed by [6] and [10]) into the
process? These questions motivate our work, and our at-
tempts to answer them constitute its main contributions.

1.2 Organization of this paper

Section 2 briefly explains how chord sequences are esti-
mated and analyzes their likely pattern of confusion. Sec-
tion 3 discusses the very basics of sequence alignment,
introduces our strategy for scoring character substitutions
and explains our approach to key-invariant alignment. Sec-
tion 4 presents the results and discussion of four exper-
iments on cover song identification aimed at measuring
the impact that certain parameter configurations have on
retrieval. Section 5 presents conclusions and future work.

2 ESTIMATING CHORD SEQUENCES

In [2] a methodology was introduced for robustly gen-
erating sequences of major and minor triads from audio
signals. The approach, to be briefly summarized in the
following, is used as the front end to our cover song iden-
tification system. First, 36-dimensional chroma vectors,
or pitch-class profiles, are calculated from the audio sig-
nal by collapsing constant-Q spectral data into one oc-
tave. These vectors are tuned and, optionally, averaged
within beats, before being quantized into 12-bin vectors
representing the spectral energy distribution across notes
of the chromatic scale. These features are used as observa-
tions on a 24-state hidden Markov model, where each state
corresponds to one of the major and minor triads. The
parameters of the model, initialized using simple musi-

cal knowledge, are trained in an unsupervised fashion us-
ing the Expectation-Maximization (EM) algorithm. Dur-
ing training, state-to-observation parameters are clamped,
thus resulting on a ‘semi-blind’ optimization. The final se-
quence of triads is obtained by decoding the model using
the Viterbi algorithm.

TP: 69.64 PAR: 3.44 REL: 5.81 V: 4.00
IV: 2.21 III: 2.42 OTH: 7.69 NR: 4.79

Table 1. Chord estimation results using frame-based chro-
mas. Values are in percentage of total detections.

While chord estimation results are available on the origi-
nal paper, it is more relevant to this work to discuss a more
recent evaluation of the system. Table 1 depicts results and
confusion on a chord recognition test performed against
110 manually-annotated chord sequences of recordings by
the Beatles (see [7] for more details about this dataset).
For the test we assume enharmonic equivalence and map
complex chords, e.g. 6ths, 7ths, to their base triad (e.g.
Em7 = Em). Numbers in the table indicate the percentage
of total detections for the following categories: true pos-
itives (TP), parallel major/minor confusions (PAR), rela-
tive major/minor confusions (REL), dominant confusions
(V), sub-dominant confusions (IV), third or sixth confu-
sions (III), confusions not in the above categories (OTH)
and chords which are not recognized by the system and
counted as errors (NR, e.g. diminished, augmented, si-
lences). The results are revealing in that they show that
nearly half the errors that the system makes (REL + V +
IV + III) are in the immediate vicinity of the true posi-
tive in the doubly-nested circle of 5ths of major and mi-
nor triads [2]. Assuming that these results can be gen-
eralized to the larger set we use for retrieval, then true
positives and these closely-related errors account for 85%
of total sequence content. Beyond the obvious relation
between these results and our choice of initialization for
the HMM’s state-transition probability matrix, lies the fact
that the ordering of chords in the circle provides a good
model for the scoring of character substitutions, an issue
at the heart of sequence alignment methodologies.

3 SEQUENCE ALIGNMENT

Finding the globally-optimal alignment between strings is
an extensively researched topic, notably in bioinformatics
[5]. The idea is to find the best possible path between the
strings by allowing inexact character matches (i.e. substi-
tutions or swaps) and the introduction of gaps in either of
the sequences. In this context, the best path is the one that
maximizes a score function, usually the sum of individual
scores for aligned pairs of characters, under the consid-
eration that both gap insertions and substitutions imply a
penalty, to be respectively known as γ and Ŝ. Because
the number of substitutions and gaps is expected to be
low between similar sequences, the resulting score is a
good measure of similarity. In our application, measur-
ing similarity using string matching provides the added



Figure 1. Matrix S based on unitary distances on the
doubly-nested circle of 5ths

benefit of taking the sequence ordering into consideration,
and thus the temporal structure of the musical piece. This
stands in contraposition to the common “bag-of-features”
approach where feature ordering is mostly, or totally, ig-
nored. In the present system we use a standard solution to
globally-optimal string alignment, based in Dynamic Pro-
gramming, and known as the Needleman-Wunsch-Sellers
(NWS) algorithm (see [5] for a detailed explanation). We
use the implementation in NeoBio, and open-source li-
brary of bio-informatics algorithms in Java [4].

3.1 Substitution Matrix

Some string alignment implementations use a uniform pe-
nalty for all substitutions (e.g. string-edit distance). How-
ever, our chord sequences are inaccurate and, more im-
portantly, they follow an non-uniform error pattern that
can be predicted from the data on Table 1. Hence, it is
best to use a score function, i.e. a substitution matrix, that
is able to favor certain chord swaps above others. The
matrix is defined such that a positive/negative value on
the matrix results on an increase/decrease of the global
score. For our experiments we use the substitution matrix
Ŝ = (S − α) × β, where S, in Figure 1, is derived from
the ordering of chords in the doubly-nested circle of 5ths;
α is an offset that changes the distribution of positive and
negative values in the matrix; and β is a scaling factor (=
10 in the rest of this paper). Values in the main diago-
nal of S (characterizing perfect matches) are equal to 12.
In any given column, going a step up or down from the
main diagonal results on a unitary decrease on the substi-
tution value. This pattern is repeated until we reach zero
at the opposite end of the circle (e.g. for a C/F# substi-
tution). From that point on, values start to increase again
until we reach full circle. As can be seen in the figure, the
matrix favors substitutions between harmonically-related
triads (e.g. between C and e/a or F/G), i.e. between those
triads that, according to results in Table 1, are more likely
to be confused.

3.2 Key-Invariant Alignment

The characterization of similarity using chord sequence
alignment is key dependent. Except perhaps for a few
cases, e.g. when the key shift is a relative minor or a
dominant, the scoring of the alignment will be badly af-
fected by variations on the key context. Even in those
cases, key dependency increases the probability that non-
relevant songs that happen to be on the same key as the
query will be scored higher. As we cannot assume that
different versions of a song will all be in the same key, we
propose a simple mechanism for key matching between
sequences before alignment. Let us define x and y as two
integer sequences (of any length) such that their elements
xi, yi ∈ 0..23. This integer range corresponds to the 24
major and minor triads organized from C to A minor, fol-
lowing the ordering in the axes of Figure 1. Let us also de-
fine X and Y as the normalized histograms of sequences
x and y respectively. We propose that the score is maxi-
mized for the alignment between x and ŷφ, a key-shifted
version of y defined as ŷφ = (y + φ) mod 24, where
φ = argmaxm(X · Ŷm), Ŷm = Y [(n − m) mod 24],
∀n ∈ 0..23 and m ∈ 0 : 2 : 22 is defined such that
only major/major or minor/minor shifts are allowed. This
very simple approach is only bound to be effective when
histogram shapes are similar, as we hope to be the case
between cover songs. The latter assumption is not neces-
sarily true when the structure of the songs being compared
is significantly different.

4 EXPERIMENTS

A collection of 3208 mp3 files of commercially-available
music is used for testing. It contains songs on a wide
variety of genres with an emphasis on Anglo-American
Pop and Rock. Within that collection there is a cover
song sub-set of 157 songs representing 36 different pieces
of music. This averages to 4.36 versions per piece, al-
though actual numbers oscillate between 2 and 16 ver-
sions per piece. This sub-set is quite heterogeneous, rang-
ing from 22 studio-live pairs by the same band (out of 391
cover-song pairs) such as Nirvana’s “Come as you Are” in
Nevermind and in MTV Unplugged in New York, to radi-
cal interpretations such as Rancid’s remake of Bob Mar-
ley’s “No Woman No Cry” or REM’s remake of Gloria
Gaynor’s “I Will Survive”. Most versions are by different
artists and usually involve changes on instrumentation.
Performance is evaluated by using all 157 cover songs as
queries and measuring precision and recall based on the
ranking of the other versions of each query. The queries,
which are always retrieved at rank 1, are removed be-
fore evaluation. Since this is a standard IR evaluation,
where the number of relevant documents is known, we
use common performance measures such as the average
R-Precision (Precision at rank R, where R is the total num-
ber of relevant items), the average Mean Reciprocal Rank
(MRR - 1/rank of the first relevant item) and average 11-
point Precision/Recall graphs for visualization.



Figure 2. 11-point P/R graphs for retrieval with and with-
out key shifting.

Parameters Results (0-1)
Key-shift γ α Scope δ R-P MRR

on -10 10 frame 12 0.221 0.395
off -10 10 frame 12 0.089 0.223
on 0 10 frame 12 0.116 0.220
on -20 10 frame 12 0.182 0.337
on -10 2 frame 12 0.122 0.265
on -10 6 frame 12 0.149 0.317
on -10 10 beat 1 0.168 0.320
on -10 10 beat 2 0.170 0.323
on -10 10 beat 4 0.145 0.285
on -10 10 frame 6 0.245 0.401
on -10 10 frame 20 0.208 0.377

Table 2. Results for various model parameters (Best set
in bold).

In our experiments we aim at measuring the impact of the
following actions: (i) using key-shifting - in Section 4.1;
(ii) varying the gap penalty γ used by the scoring algo-
rithm - see Section 4.2; (iii) changing the distribution of
positive and negative values on the substitution matrix Ŝ
by varying the offset value α - in Section 4.3; and (iv) us-
ing beat synchronous instead of frame-based chroma fea-
tures for the sequence estimation - see Section 4.4. Since
our sequences are highly redundant and the NWS algo-
rithm is computationally very expensive (O(n2) for se-
quence length n), sequences are downsampled by a factor
δ. The impact of this resampling in the performance of
the system is also measured on the last experiment. For
the same reason, we avoid the testing of all combinations
in the parameter space by assuming that parameters are
independent from each other. This is an arguable assump-
tion but a necessary one. Table 2 shows averages of R-
Precision (R-P) and Mean Reciprocal Rank (MRR) for all

the combinations of parameters tested in our experiments.
Values range from 0 to 1, with 1 being the best possible
value. The low values in the table hint at the difficulties
of the task of cover song identification. Since an open test
collection is not available, comparisons cannot be made
with existing approaches. However, by the time of publi-
cation, results of this method in the context of the MIREX
2007 Cover-song ID task will be available for comparison.
To get an idea of what the numbers in this paper mean in
practice, the reader is encouraged to look at the full list of
music and test results on the author’s website 1 .

4.1 Testing Shifts

In the first experiment, we test the impact of key shifting
on the system’s performance. Figure 2 shows the aver-
age 11-point P/R graph with and without the key-shifting
algorithm described in Section 3.2. For this experiment:
γ = −10, α = 10, δ = 12, and feature scope = frames.
Results on Table 2 and Figure 2 show how key-shifting
brings about significant improvement on retrieval results.
Precision increases for all recall rates showing that rele-
vant items are consistently ranked higher using this ap-
proach. This increase is particularly acute (> 15%) for
recall rates between 0.3 and 0.6. These results are no sur-
prise as they corroborate the intuition that key-shifting is
a solution to the known key independence of cover songs.
However they cannot be taken for granted, since key shift-
ing also increases the risk that non-relevant songs with
similar chord progressions, a common occurrence in pop
music, will be ranked higher than relevant songs. It is
possible that our simple key-shifting approach might help
decrease this risk by favoring alignment between songs
with very similar chord distributions. On the other hand,
this approach might be precluding covers which are sig-
nificantly different in structure, and thus bound to have
dissimilar chord distributions, to be ranked higher.

4.2 Testing Gaps

Experiment 2 is aimed at testing the sensitivity of the sys-
tem to changes on the gap penalty γ. For this experiment
we use γ = 0, -10 and -20, while α = 10, δ = 12, key-
shifting is on and feature scope = frames. Results in Fig-
ure 3 show how worst performance is achieved for the case
when no penalty is used, i.e. γ = 0 . This indicates that,
if allowed to time-scale at no cost, many a non-relevant
chord sequence can be matched to a query. Again, this is
related to the constant use of similar chord progressions
in popular music, where harmonic palettes are often less
varied that in orchestral music, for instance. However, the
fact that results are consistently better for γ = −10 than
for γ = −20 indicates that over-penalizing for gap inser-
tions also has a negative effect on performance. This is
intuitive since large gap penalties do not allow the flexi-
bility needed to match similar songs with different tempi
or with slight changes of form.

1 http://homepages.nyu.edu/∼jb2843/Publications/ismir07.html



Figure 3. 11-point P/R graphs for variations of the gap
penalty γ

Figure 4. 11-point P/R graphs for variations of α

4.3 Testing Swaps

Although the order of preference of chord swaps is pre-
defined by the values in matrix S, changes in the offset
value α, used to define the substitution matrix Ŝ, signify
which swaps have a positive or negative impact on the
score function. Experiment 3 is aimed at testing how per-
formance is affected by these changes. For this test we use
α = 2, 6 and 10, with γ = −10, δ = 12, key-shifting on
and feature scope = frames. The range of α was selected
to be symmetrical with respect to the center of the circle of
5ths (corresponding to α = 6), while avoiding values that
will render Ŝ completely positive or negative, i.e. α ≤ 0
and α ≥ 12. Figure 4 shows that results are worse when

scoring for swaps is too permissive, e.g. for α = 2 when
most values in Ŝ are positive. Results are slightly better
for α = 6 and much better for α = 10.This is an impor-
tant observation as the increase of α is the same between 2
and 6 as it is between 6 and 10, while the rate of improve-
ment is notably different. This difference highlights the
suitability of using positive scoring only for those swaps
which are close in the circle of 5ths, as suggested by the
information on Table 1. These results strongly support the
view that an adequate choice of substitution matrix can
help offset the negative impact that chord estimation er-
rors can have on the retrieval of similar songs.

4.4 Testing Beats

The final experiment tests: (a) the impact of using beat-
synchronous instead of frame-based chroma features, and
(b) the effect of downsampling sequences by a factor δ
before alignment. These tests are grouped together be-
cause both these parameters affect the length of the se-
quences to be aligned, and thus the computational expense
of querying the system. In fact, beat-synchronous estima-
tion reduces the average sequence length to one-sixth of
the frame-based length. As a result we test frame-based
features with δ = 6, 12 and 20, against beat-based features
with δ = 1, 2 and 4. The other parameters are set to: γ =
-10, α = 10 and key-shifting on. Figure 5 shows results
for this experiment. Because of the density of this graph,
the figure only depicts a detail of the 11-point P/R curves
for Precision ∈ [0.05, 0.7] and Recall ∈ [0.1, 1].
Against our expectations, frame-based analysis consistent-
ly outperforms beat-synchronous analysis. The difference
is further emphasized when comparing parameter combi-
nations with similar computational complexity (e.g. [beat,
δ = 1] with [frame, δ = 6]). Perhaps this is an indication
of the difficulties in performing robust onset detection and
beat-tracking on a large collection of music with many
different styles and instrumentations. If beat-tracking is
noisy, e.g. if beat segments include chord transitions, then
our chord labels will be prone to errors. Furthermore, it is
very unlikely that the error distribution will correspond to
values in Table 1, thus rendering our swap scoring strat-
egy useless. This is by no means a reflection on all beat-
tracking strategies. These results could very well be due
to the shortcomings of our beat-based analysis (see a de-
scription in [2]). However they do highlight the risks taken
when segmenting prior to sequence estimation.
The results for the various values of δ are more predictable.
As expected, an increase of δ, implying a lossy compres-
sion of the sequence, entails a decrease in performance.
This can be seen for both frame and beat-based analysis.
As a result, best performance overall is for frame-based
analysis with the smallest downsampling factor (δ = 6).
It is also logical to expect that frame-based analysis with-
out downsampling (δ = 1) would perform even better, but
this experiment takes too long to run under our current
configuration.



Figure 5. Detail of 11-point P/R graphs for variations of
feature scope and downsampling factor δ

5 CONCLUSIONS

We present a solution to cover-song identification using
approximate chord sequences and string alignment. More
so than the approach itself, the emphasis is on the choice
of a parameter set that: (i) helps us characterize the essence
of cover songs independently of key, tempo or instrumen-
tation; while (ii) taking into account the error-prone na-
ture of chord sequences estimated from audio. Specifi-
cally, the paper contributes a systematic evaluation of key
shifting, the cost of gap insertions and character swaps in
string alignment, and the use of a beat-synchronous fea-
ture set. Results show that frame-based analysis consis-
tently outperforms beat-synchronous segmentation, con-
tradicting our intuition that such pre-processing could help
overcome tempo differences between covers. We specu-
late, in the absence of a full evaluation, that this is due
to the inability of our beat-based analysis to generalize to
music of different styles and instrumentation. This neg-
ative result could be reversed in future implementations
by the use of a more sophisticated beat-tracking system,
such as the one used in [6]. Results also show that con-
siderable improvement is brought about by pairwise key
matching, moderately penalizing gaps and positively em-
phasizing swaps that are related to common confusions
of our chord estimation algorithm. These results support
the view that string alignment, as a mechanism for audio-
based retrieval, cannot be oblivious to the problems of ro-
bustly estimating musically-meaningful information from
audio. Future research will concentrate on overcoming the
limitations imposed by the high computational cost of the
implemented approach (in excess of 100ms per pairwise
comparison, resulting in 5+ minutes of computation per
query). Possible solutions to this problem could include
the use of efficient search methodologies such as iterative

deepening [1], or the use of representative parts of a song
(e.g. chorus) for comparison.
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