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ABSTRACT

In the context of music, a cover version is a remake of
a song, often with significant stylistic variation. In this
paper we describe a distance measure between sampled
audio files that is designed to be insensitive to instrumen-
tation, time shift, temporal scaling and transpositions. The
algorithm was submitted to the Music Information Re-
trieval eXchange (MIREX) 2007 audio cover song iden-
tification task, where it came fourth of the eight submitted
algorithms.

1 INTRODUCTION

As the size of digital music collections increase, navigat-
ing such collections become increasingly difficult. One
of the goals of the music information retrieval commu-
nity is to develop signal processing algorithms to facilitate
such navigation, for instance by finding cover versions of
a song. Comparing different algorithms has been imprac-
tical, as copyright issues have prevented the development
of standard music collections. The annual MIREX evalu-
ations overcome this problem by having participants sub-
mit their algorithms which are then centrally evaluated.
This way, distributing song data is avoided. If the test
collection will not come to the algorithms, the algorithms
will go to the test collection.

The MIREX cover song retrieval contest was first held
in 2006, where the algorithm in [3] had the best retrieval
performance. This algorithm was especially developed for
cover song identification and was computationally rela-
tively expensive. It combined the chromagram with a beat
tracker in order to obtain a beat-synchronous chromagram
that was insensitive to temporal differences between dif-
ferent versions of a song. Instead of beat tracking, the
submission described in this paper uses a feature that is
insensitive to time shifting and temporal scaling.

2 OVERVIEW

In Figure 1, a block diagram of the proposed algorithm
is shown. The assumptions behind are that a song and
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its cover versions share the same melody, but might dif-
fer with respect to instrumentation, time shifts, tempo and
transpositions. The feature extracted as shown in Figure 1
is insensitive to the former three properties, while the dis-
tance computation ensures invariance to transpositions. In
Figure 2 and 3, the output of different stages in the feature
extraction is shown. Note that except a horizontal shift of
one band, Figure 2(c) and 3(c) are very similar.

2.1 Chromagram

The chromagram is conceptually a frequency spectrum
which has been folded into a single octave [1]. This single
octave is divided into 12 logarithmically spaced frequency
bins that each correspond to one semitone on the western
musical scale. Although only an approximation, we will
consider the chromagram a soft decision activation pat-
tern that tells whether a given note is playing. To compute
the chromagram, we use the implementation described in
[3]. Empirically, we found that using the logarithm of the
chromagram increased performance. Let Y be a matrix
containing the chromagram where element (Ylog)ij mea-
sures the strength of semitone i, i ∈ 1, 2, · · · , 12, in frame
j. To avoid numerical problems, we then compute the log-
arithm as

(Ylog)ij = log
(Y )ij + δ

δ
, (1)

where δ is a small constant.

2.2 Power spectrum

To avoid time alignment problems, we remove all phase
information by computing the power spectrum for each
row of Ylog, i.e., the activation pattern for each semitone.
Empirically, the power spectrum performed better than the
amplitude spectrum.

2.3 Time-scale invariance

If x(t) is a continuous signal and X(f) = F{x(t)} is
its Fourier Transform, then a temporal scaling of x(t) will
also cause a scaling in the frequency domain: F{x(kt)} =
X(f/k). For cover song detection, it is reasonable to as-
sume that k is bounded, i.e., that two songs do not dif-
fer in tempo more than e.g. a factor 1.4, in which case
1

1.4 ≤ k ≤ 1.4. If either the time or frequency axis is
viewed on a logarithmic scale, a time scaling (i.e., k 6= 1)
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Figure 1. Block diagram of the feature extraction.

(a) Chromagram after taking the logarithm.

(b) Power spectrum of the chromagram rows.

(c) Energy in the 25 exponentially spaced bands

Figure 2. Different stages of feature extraction from
MIDI song with duration 3:02.

(a) Chromagram after taking the logarithm.

(b) Power spectrum of the chromagram rows.

(c) Energy in the 25 exponentially spaced bands

Figure 3. Feature extraction from the same MIDI song as
in Figure 2, except it is stretched to have duration 3:38.



Figure 4. Bandwidths of the 25 logarithmically spaced
filters.

will show up as an offset. This is used in e.g. [5] to make
the distance between the fundamental frequency and its
harmonics independent of the fundamental frequency it-
self. As we assume k is bounded, then so will the offset
be. Thus, on the logarithmic scale, we could represent
the signal by the output of a number of equally spaced
bands with effective bandwidth corresponding to the po-
tential offset. Alternatively, on the linear scale, a set of
exponentially spaced bands with relatively large effective
bandwidth would do the trick. In Figure 4, the 25 logarith-
mically spaced bands with 50% overlap that we used are
shown. The lowest band start at 0.017 Hz, and the highest
band end at 0.667 Hz, thus capturing variations on a time
scale between 1.5 s and 60 s. The amount of temporal
scaling allowed is further increased when computing the
distance. The resulting feature is a 12 × 25 matrix where
component i, j reflects the activity for semitone i in band
j.

2.4 Distance

We compute the distance between the two feature matri-
ces X1 and X2 by normalizing them to unit norm and
minimizing the Frobenius distance over the allowed trans-
positions and frequency shifts. First, we normalize to unit
Frobenius norm:

X′
1 = X1/‖X1‖F, (2)

X′
2 = X2/‖X2‖F. (3)

Let T12 be the 12× 12 permutation matrix that transposes
X′

1 or X′
2 by one semitone:

(T12)i,j =

{
(I)i+1,j for i < 12,
(I)1,j for i = 12,

(4)

where I is the identity matrix. To compensate for possible
transpositions, we minimize the Frobenius distance over
all possible transpositions:

d′(X′
1,X

′
2) = min

t∈{1,2,··· ,12}
‖T t

12X
′
1 −X′

2‖F. (5)

To allow even further time scaling than permitted by the
effective bandwidths, we also allow shifting the matrix:

d(X′
1,X

′
2) = min

s∈{−2,−1,0,1,2}
d′(X′(s)

1 ,X
′(−s)
2 ), (6)

Figure 5. Effect of transpositions on melody recognition
accuracy.

Figure 6. Effect of lengthening or shortening a song on
melody recognition accuracy. Duration is relative to orig-
inal song.

where

X
′(s)
l =

{[
0s X′

l

]
if s ≥ 0,[

X′
l 0−s

]
if s < 0,

(7)

and where 0s is a 12× s matrix of zeros.

3 RESULTS

We have evaluated the distance measure by using a nearest
neighbor classifier on two different datasets, namely a set
of MIDI files [4] and the covers80 set [2]. The basic set of
MIDI files consists of 900 MIDI songs that are the com-
binations of 30 different melodies of length 180 seconds
played with 30 different instruments. To measure the sen-
sitivity to transpositions and variations in tempo, the set in
which the nearest neighbor is found is replaced by trans-
posed versions of the songs and lengthened/shortened ver-
sions. In Figure 5 the effect of transpositions is shown,
and in Figure 6 the effect of changing the tempo is shown.
It is seen that transposing songs hardly affect performance,
and that changing the tempo between a factor 0.7 and 1.4
also does not affect performance too seriously.

The covers80 dataset consists of 80 titles each in two
different versions, i.e., a total of 160 songs. With this set,
a song’s nearest neighbor was the cover version in 36% of
the cases. However, as parameters have been tweaked us-
ing this dataset, some degree of overtraining is inevitable.
The algorithm was also submitted for the MIREX 2007
audio cover song identification task. The results of this
evaluation are shown in Table 1.



Rank Participant Avg. Covers
prec. in top 10

1 Serrà & Gómez 0.521 1653
2 Ellis & Cotton 0.330 1207
3 Bello, J. 0.267 869
4 Jensen, Ellis, Christensen

& Jensen
0.238 762

5 Lee, K. (1) 0.130 425
6 Lee, K. (2) 0.086 291
7 Kim & Perelstein 0.061 190
8 IMIRSEL 0.017 34

Table 1. MIREX 2007 Audio Cover Song Identification
results. In comparison, the 2006 winner [3] identified 761
cover songs in top 10.
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