
REAL-TIME TRANSCRIPTION OF MUSIC SIGNALS:
MIREX2007 SUBMISSION DESCRIPTION

Arshia Cont
University of California in San Diego, CA. And

Ircam-Centre Pompidou, Paris, France.
http://cosmal.ucsd.edu/arshia/

ABSTRACT

This paper briefly describes the underlying methodology
beneath our submissions to the first Multi-F0 Estimation
and Tracking Evaluation Task at MIREX 2007 1 . The two
systems described here are based on simple facts about
music pitch structures that is briefly described in this abs-
tract and share variations of an on-line machine learning
approach presented previously in [1]. The systems were
designed as a compromise between the speed of perfor-
mance and precision, and achieves real-time performance
and compete with systems very far from on-line conside-
rations.

1 INTRODUCTION

The task of estimating multiple fundamental frequen-
cies of audio and speech signals has attained substantial
effort from the research community in the recent years.
More interestingly, proposed algorithms in the literature
undergo a wide variety of methods spanning from pure si-
gnal processing models to machine learning methods. For
an excellent overview of different methods for multiple-f0

estimation, we refer the curious reader to [2].
The submitted algorithm is quite different from others

in the literature both in its purpose and approach. It is
destined not for continuous multiple f0 recognition but
rather for projection of the ongoing spectrum to learned
pitch templates. The decomposition algorithm on the other
hand, does not compromise signal processing models for
pitches and consists of an algorithm for efficient decom-
position of a spectrum using known pitch structures and
based on sparse non-negative constraints.

An important motivation behind the submitted algo-
rithm is the simple intuition that humans tend to use a re-
constructive scheme during detection of multiple pitches
or multiple instruments and based on their history of tim-
bral familiarity and music education. That is to say, in
music dictation practices, well-trained musicians tend to
transcribe music by conscious (or unconscious) addition

1 http://www.music-ir.org/mirex2007/index.php/
Multiple_Fundamental_Frequency_Estimation_&_
Tracking
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of familiar pitches produced by musical instruments. The
main idea here is that during detection of musical pitches
and instruments, there is no direct assumption of indepen-
dence associated with familiar patterns used for recons-
truction and we rely more on reconstruction using super-
positions.

Considering these facts, we can generally formulate
our problem by non-negative factors. Non-negativity in
this case simply means that we do not subtract pitch pat-
terns in order to determine the correct combination but
rather, we somehow manage to directly point to the cor-
rect combination of patterns that reconstruct the target by
simple linear superposition. Mathematically speaking, gi-
ven V as a non-negative representational scheme of the
realtime audio signal in RN+ , we would like to achieve

V ≈ WH (1)

where W is a non-negative RN×r+ matrix holding r tem-
plates corresponding to objects to be detected and H is a
simple non-negative r× 1 vector holding the contribution
of each template in W for reconstructing V . During real-
time detection, we are already in possession of W and we
tend to obtain H indicating the presence of each template
in the audio buffer that is arriving online to the system in
V . Given this formulation, there are three main issues to
be addressed :

1. What is an efficient representation for V ?

2. How to learn templates in W using V ?

3. How to obtain acceptable results in H in realtime ?

In the framework of MIREX 2007 Multiple-f0 estima-
tion and tracking, the answer to the estimation task sim-
ply lies in the decoded H vector for each analysis frame
of real-time audio. For polyphonic pitch tracking, a paral-
lel tracking module is added on top of H vectors through
time to grab the onset and offset times of each event. The
estimation part is an enhancement of a previous develop-
ment fully described in [1]. In this abstract we define the
underlying principles of the algorithm and invite the cu-
rious reader to the follow the mentioned paper, [3] and
further publications.



2 GENERAL ARCHITECTURE

The proposed method relies on unsupervised learning
algorithms that are used for knowledge representation and
discovery. During realtime observation, the algorithm tries
to reconstruct the ongoing audio using previously learned
pitch structures of an instrument, as a linear combination
with non-negative weights. This implies an offline lear-
ning of pitch structures of all the pitches of an instrument
which will be used as templates during learning.

The real-time estimation algorithm features a novel ma-
chine learning procedure based on Sparse Non-Negative
Constraints. This overall architecture is similar to the sys-
tem proposed in [4] with a crucial difference for music
signals. Instead of using a regular Non-Negative Matrix
Factorization (NMF) [5] algorithm for real-time determi-
nation of pitch, we use a modified NMF algorithm with
sparseness constraints as outlined casually in this abstract.

2.1 Representational Front-end

The additive characteristic of NMF is an essential fac-
tor for any kind of representation used for V which, in the
case of multiple pitch observation, implies that the spec-
tral representation used for V should demonstrate a har-
monic stack of pitch templates added together for a given
chord.

The signal processing front end used for this observa-
tion is the result of a fixed point analysis of frequency
to instantaneous frequency mapping of the ongoing audio
spectrum [6]. The short-time Fourier transform (STFT) is
an efficient tool for instantaneous frequency (IF) estima-
tion [7]. As a result, vector V would be non-negative am-
plitudes of the fixed-point instantaneous frequency repre-
senting harmonic stacks at each analysis frame with the
rest of the spectrum zeroed out.

2.2 Learning Pitch Templates

The system knows the pitch structures of all pitches of
an instrument for use during realtime observation. Here
we briefly mention how we learn different pitch templates
for an instrument. As a reminder, W contains pitch struc-
tures of all pitches of a given instrument. For example, for
an acoustic piano, matrix W would contain all 88 pitches
as 88 different columns. To this end, training is done using
databases of instrumental sounds (e.g. [8]) and an off-line
training learns different pitch structures of an instrument
by browsing all sounds produced by the given instrument
in the database and stores them in matrix W for future use.

For each audio file in the database, training is an itera-
tive NMF algorithm with a symmetric kullback-leibler di-
vergence for reconstruction error. The regular NMF lear-
ning is moreover enhanced by a harmonic constraint at
each iteration, enforcing learning of harmonic templates
of each given note in the database.

2.3 Sparsity of the Solution

Despite perceptual advantages of an NMF approach
over ICA algorithms for multiple-pitch detection, since
pitch templates are not mathematically independent, for
a given spectrum (in V ) there may exist many possible so-
lutions (H) using templates in W . More specifically for
our problem, a given piano chord can be reconstructed by
the templates of its original pitches as well as octaves, do-
minant and other pitches with harmonic relations to the
original ones.

To overcome this problem, we use the strong assump-
tion that the correct solution for a given spectrum (in V )
uses a minimum of templates in W , or in other words, the
solution has the minimum number of non-zero elements in
H . This assumption is hard to be proofed for every music
instrument and highly depends on the template presenta-
tions in W , but is easily imaginable as harmonic structure
of a music note can be minimally expressed (in the mean
squared sense) using the original note than a combination
of its octaves and dominant.

Fortunately, this assumption has been heavily studied
in the field of sparse coding. The concept of sparse coding
refers to a representational scheme where only a few units
out of a large population are effectively used to represent
typical data vectors.

These concerns led us to a modified non-negative de-
composition algorithm with sparsity controls. In the sub-
mitted system, sparsity is assured by a mixture of two
commonly used norms in the sparse coding literature :
`ε (approximated here by a tanh function) and `2 norms.
The overall algorithm is a gradient-descent update where
at each iteration the result is being optimized by projec-
tions to the intersection of two tanh and `2 hyper-planes.
In this application, `ε is controlled by the user and `2 is
provided by the signal’s on-going average spectral power
that assure time-continuity of the results. This outlines our
first submission. The second submission is basically the
same algorithm, but the `ε norm is replaced with a com-
bination of `1 and `ε to relax the constraints on certain
iterations.

3 CONCLUSION

In this abstract, we briefly described the underlying
concept to our submissions to the first Multi-f0 estima-
tion and tracking evaluation contest. The proposed method
was designed to meet the real-time constraint usually met
in computer music and MIR tasks. Therefore the propo-
sed system is a compromise between speed of computa-
tion and precision and would be competing with systems
much further than real-time performance. The training of
our system is done over real recordings of music, and thus
we also expect worse performance on synthesized scores
in general.

The system is currently being released for computer
music real-time programming environments such as Pure



Data 2 and MaxMSP 3 . Progress can be checked at the
author’s webpage.

For further information regarding details, future deve-
lopments, and extension of the presented algorithms, we
refer the curious reader to [1, 3] and future publications.
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