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ABSTRACT

Two multiple fundamental frequency estimation sys-
tems are presented in this work. In the first one (PI1, PI2),
the best fundamental frequency candidates combination is
found in a frame-by-frame analysis by applying a set of
rules, taking into account the spectral smoothness mea-
sure described in this work. The second system (PI3) was
used to extract symbolic features for audio genre classifi-
cation in a fast way, so the evaluation of this system can
reveal the potential of another similar approaches to sup-
port these kind of tasks.

1 INTRODUCTION

The goal of a music transcription system is to extract a
score from an audio piece. A multiple fundamental fre-
quency estimator is the main piece of a polyphonic tran-
scription system, whereas tempo detection and key esti-
mation complement it to correctly extract the score. Two
multi-f0 estimators are presented in this work.

The first system takes into account the smoothness and
the amplitudes of the harmonics of each f0 candidate, per-
forming a frame by frame analysis.

The second one has been introduced in [2], where the
goal was to improve previous music genre classification
results by extension of the feature space including features
extracted from symbolic data. This system was intended
to be a fast prototype to extract the notes from an audio
file. In general, multi-f0 estimation is a very difficult task,
but in spite of the amount of false positive and negative
notes that these kind of systems produce, the results for
genre recognition increased when adding symbolic fea-
tures extracted using this multi-f0 estimator.

2 SYSTEMS DESCRIPTION

2.1 Multi-f0 estimation using Gaussian smoothness

This system uses Gaussian spectral smoothness as salience
measure to select f0 candidates. This estimator converts
a mono audio file sampled at 44 kHz into a sequence of
notes. First, it analyzes the target song performing a Short
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Time Fourier Transform (STFT). To compute it, a Han-
ning window with 4096 samples and 50% overlap has
been used. With these parameters, the temporal resolu-
tion is 46 ms. Zero padding has been used, multiplying
the original size of the window by 4 and adding zeroes to
complete it before the STFT is computed. This technique
does not increase resolution, but the estimated amplitudes
and frequencies of the new spectral bins are usually more
accurate than applying interpolation.

In order to adapt the system to the MIREX frame-by-
frame evaluation requirements, the overlapping percent-
age was changed to be 90%, getting a temporal resolution
of 9.28 ms. As the window size is large, this is a draw-
back, because temporal precision don’t increment much
the detection results and it makes the system slower.

To detect the fundamental frequencies in the target frame,
a set of f0 candidates is selected first. A spectral peak is
a candidate if it’s within the range [38 Hz , 2100 Hz], and
at least two of its harmonics are found. To search for har-
monics, a fixed range [-10 Hz , 10 Hz] around each har-
monic frequency hf0 for h = 2, 3, ... is considered. The
peak which is closest to this frequency within this range is
set as a harmonic partial, and if there are no peaks in this
range then that harmonic amplitude is set to 0.

Candidates are ordered by the sum of their harmonic
amplitudes and, as maximum, only the first C candidates
of this list (C = 10) are considered. Then, all the possible
candidate combinations (chords) are calculated, and the
chord with best salience will be chosen in the target frame.

A candidate salience is computed by taking into ac-
count the loudness and smoothness of its harmonic am-
plitudes. To get these values, an iterative algorithm is ap-
plied. First, for each candidate, harmonics are searched
and their amplitudes are stored in a vector. Then, each
harmonic is marked with a label containing all the can-
didates that the harmonic belongs to. From the lowest to
the highest frequency candidate, the harmonic amplitudes
stored in the amplitude vectors are updated; for each can-
didate, the non-shared harmonic amplitudes stay the same,
but the shared harmonic amplitudes are linearly interpo-
lated using the non-shared amplitudes in the same candi-
date vector. If an interpolated value is greater than the ob-
tained harmonic amplitude, then the candidate’s harmonic
value in the vector will remain the same and the spectral
peak will be removed for other candidates. If the inter-



polated value is smaller, this value will be assigned to the
candidate harmonic vector and will be subtracted from the
corresponding spectral peak.

When this process is done for all the candidates in a
combination, each candidate loudness l is computed by
summing all the values of its amplitude vector. Smooth-
ness is also computed for each vector, by using a Gaus-
sian filtering; the idea is that a smooth spectral pattern
should be more probable than a sharper one. To compute
the smoothness of a harmonic amplitudes vector, h, it is
low-pass filtered using a truncated Gaussian window with
three components Gσ=0.5 = {0.2, 0.6, 0.2}, that is con-
volved with h obtaining the smooth version, h̃ = G0.5∗h.
Then a sharpness measure is computed as S = h̃− h.
This value is normalized, S̄, and the smoothness is set as
s = 1− S̄.

Once the smoothness and the loudness of each candi-
date have been calculated, the salience of a note is com-
puted as l · s2, and the salience of a combination of notes
is the sum of all its note saliences. The combination with
best salience is the winner chord in this frame. Combina-
tions that have at least one candidate with l < 0.1L are
discarded, being L = max{l} the loudest candidate.

After selecting the f0 candidates in all the frames, a last
stage is applied to avoid local errors. If a given frequency
was not detected in a target frame but it was found in the
previous and next frames, it is considered to be detected
in the current frame too, avoiding discontinuities in the
detection. Finally, very short notes (less than 6 frames, i.e.
55.68 ms) are removed, and the sequences of consecutive
detected fundamental frequencies are converted to MIDI
notes.

2.2 Multi-f0 estimation using constant spectral pat-
tern matching

This system was integrated within the audio genre clas-
sifier proposed in [2]. As part of a more complex sys-
tem, it is very important for this multi-f0 estimator to be
fast. To achieve it, firstly the STFT is computed using the
same parameters than in the previous implementation, but
only those frames after onsets are computed to detect the
pitches.

After the STFT, the onset detection stage described in [3]
is performed, classifying each time frame ti as onset or
not-onset. The system searches for notes between two
consecutive onsets, analyzing only one frame between two
onsets to detect each chord. To minimize the note attack
problems in f0 estimation, the frame chosen to detect the
active notes was to + 1, being to the frame where an on-
set was detected. Therefore, the spectral peak amplitudes
computed 46 ms after an onset provide the information to
detect the chord.

For each frame, we use a peak detection and estimation
technique proposed by X. Rodet in [5] called Sinusoidal
Likeness Measure (SLM). This technique can be used to
extract spectral peaks corresponding to sinusoidal partials,
and this way residual components can be removed; this
makes sense for songs with percussive instruments (like

most popular music). SLM needs two parameters; the
bandwith W , that has been set as W = 50 Hz and a
threshold µ = 0.1. If the SLM value for a peak vΩ < µ, it
will be removed. After this process, an array of sinusoidal
peaks for each chord is obtained.

Given an array of spectral peaks, we have to estimate
the pitches of the notes. First, the f0 candidates are cho-
sen. This selection depends on their amplitudes and their
frequencies. If a spectral peak amplitude is lower than
a given threshold (experimentally, 0.05 reported good re-
sults), the peak is discarded as f0 candidate, because in
most instruments usually the first harmonic f0 has a high
amplitude. There are two more restrictions for a peak to
be a f0 candidate; only f0 candidates within the range
[50 Hz , 1200 Hz] are considered, and the absolute differ-
ence in Hertz between the candidate and the pitch of its
closest note in the well-tempered scale must be less than
fd Hz. Experimentally, setting this value to fd = 3 Hz
yielded good results. This is a constant value independent
of f0 because this way many high frequency peaks that
generate false positives are removed.

Once a subset of f0 candidates is obtained, a constant
spectral pattern is applied to determine whether the candi-
date is a note or not. The spectral pattern used in this work
is a vector in which each position represents a harmonic
value relative to the f0 value. Therefore, the first posi-
tion of the vector represents the f0 amplitude and it will
always be 1, the second position contains the relative am-
plitude of the second partial respect to the first one and so
on. The spectral pattern sp used in this work contains the
amplitude values of the first 8 harmonics, and it has been
set as sp = {1, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.01}, which is
similar to that proposed by A. Klapuri in [1]. As different
instruments have different spectra, this general pattern is
more adequate for some instruments, as a piano, and less
realistic for others, like a violin. This pattern was selected
from several combinations tested.

An algorithm is performed over all the f0 candidates
to determine whether a candidate is a note or not. First,
the partials that are whole multiples of each f0 candidate
are found. A harmonic h of f0 is found when the closest
spectral peak to hf0 is within the range [2hf0−fh, fh] Hz,
being fh:

fh = hf0

√
1 + β(h2 − 1) (1)

with β = 0.0004. There is a restriction for a candidate to
be a note; a minimum number of its harmonics must be
found. This number was empirically set as half the num-
ber of harmonics in the spectral pattern. If a candidate is
considered as a note, then the values of the harmonic am-
plitudes in the spectral pattern (relative to the f0 ampli-
tude) are subtracted from the corresponding spectral peak
amplitudes. If the result of a peak subtraction is lower
than zero, then the peak is removed completely from the
spectral peaks. The loudness ln of a note is the sum of its
expected harmonic amplitudes.

After this stage, a vector of note candidates is obtained
at each time frame. Notes with a low absolute or relative
loudness are removed; firstly, the notes with a loudness



ln < γ are eliminated. Experimentally, a value γ = 5
reported good results. Secondly, the maximum note loud-
ness L = maxn{ln} at the target frame is computed, and
the notes with ln < ηL are also discarded. After some ex-
periments, η = 0.1 was eventually chosen. Like in the
previous system, the sequences of consecutive detected
fundamental frequencies are converted to MIDI notes.

3 EVALUATION

The evaluation was done at two different levels; frame by
frame pitch estimation and note tracking. As the constant
spectral pattern (PI3) system did not perform a frame by
frame analysis (an onset detection stage was used and only
the frames after each onset were taken into account), it
was only evaluated in the note tracking contest.

The multi-f0 estimator that uses Gaussian smoothness
(PI1) was evaluated in the MIREX frame by frame multi-
f0 estimation contest, whose results are shown in table 1,
and the corresponding runtimes are in table 2. It can be
seen that the accuracy of the system is close to the high-
est accuracy of the analyzed systems, being the one with
best precision and with lowest Etot error [4]. The dif-
ference between precision and recall suggests that maybe
too many notes were filtered out, so probably changing
the note removal thresholds could yield a higher accuracy.
As can be seen in table 2, the performance of the system
is very good compared to the other systems analyzed.

id Acc. Pr Re Etot Esubs Emiss Efa

RK 0.605 0.690 0.709 0.474 0.158 0.133 0.183
CY 0.589 0.765 0.655 0.460 0.108 0.238 0.115
ZR 0.582 0.710 0.661 0.498 0.141 0.197 0.160
PI1 0.580 0.827 0.608 0.445 0.094 0.298 0.053
EV2 0.543 0.687 0.625 0.538 0.135 0.240 0.163
CC1 0.510 0.567 0.671 0.685 0.200 0.128 0.356
SR 0.484 0.614 0.595 0.670 0.185 0.219 0.265

EV1 0.466 0.659 0.513 0.594 0.171 0.371 0.107
PE1 0.444 0.734 0.505 0.639 0.120 0.375 0.144
PL 0.394 0.689 0.417 0.639 0.151 0.432 0.055

CC2 0.359 0.359 0.767 1.678 0.232 0.001 1.445
KE2 0.336 0.348 0.546 1.188 0.401 0.052 0.734
KE1 0.327 0.335 0.618 1.427 0.339 0.046 1.042
AC2 0.311 0.373 0.431 0.990 0.348 0.221 0.421
AC1 0.277 0.298 0.530 1.444 0.332 0.138 0.974
VE 0.145 0.530 0.157 0.957 0.070 0.767 0.120

Table 1. Frame by frame evaluation results.

Both systems were evaluated for the note tracking con-
test. Despite they were not designed for this task (the anal-
ysis is performed using individual frames), their results
were satisfactory. As shown in the table 3, the gaussian
approach (PI2) doubles the accuracy of the constant spec-
tral pattern system (PI3). These results suggest that re-
placing the PI3 system by PI2 into the genre classification
itinerary proposed in [2] could increase the results of this
music classifier. As can be seen in table 4, both systems
are the ones with fastest processing times.

id Runtime Machine
CC1 2513 ALE Nodes
CC2 2520 ALE Nodes
KE1 38640 ALE Nodes
KE2 19320 ALE Nodes
VE 364560 ALE Nodes
RK 3540 SANDBOX
CY 132300 ALE Nodes
PL 14700 ALE Nodes
ZR 271 BLACK
SR 41160 ALE Nodes
PI1 364 ALE Nodes
EV1 2366 ALE Nodes
EV2 2233 ALE Nodes
PE1 4564 ALE Nodes
AC1 840 MAC
AC2 840 MAC

Table 2. Frame by frame run times. The first column
shows the participant, the second are the running times
and the third column is the machine where the evaluation
was performed.

Precision Recall Ave. F-measure Ave. Overlap
RK 0.578 0.678 0.614 0.699
EV4 0.447 0.692 0.527 0.636
PE2 0.533 0.485 0.485 0.740
EV3 0.412 0.554 0.453 0.622
PI2 0.371 0.474 0.408 0.665
KE4 0.263 0.301 0.268 0.557
KE3 0.216 0.323 0.246 0.610
PI3 0.203 0.296 0.219 0.628
VE2 0.338 0.171 0.202 0.486
AC4 0.070 0.172 0.093 0.536
AC3 0.067 0.137 0.087 0.523

Table 3. Note tracking results based on onset and pitch.
Precision, recall, average f-measure and average overlap
are shown.

Participant Runtime (sec) Machine
AC3 900 MAC
AC4 900 MAC
RK 3285 SANDBOX
EV3 2535 ALE NODES
EV4 2475 ALE NODES
KE3 4140 ALE NODES
KE4 20700 ALE NODES
PE2 4890 ALE NODES
PI2 165 ALE NODES
PI3 165 ALE NODES
VE 390600 ALE NODES

Table 4. Note tracking running times. First column is the
participant, the second is the running time (in seconds)
and the third is the machine where the evaluation was per-
formed.
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