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ABSTRACT

The system submitted to the MIREX Audio Music Mood
Classification task is described here. It uses a set of 133
descriptors and a Support Vector Machine classifier to pre-
dict the mood cluster. The features are spectral, temporal,
tonal but also describe loudness and danceability. The fea-
tures were selected previously according to experiments
on our annotated databases. The SVM is optimized using
a grid search algorithm.

1 INTRODUCTION

Mood classification is a new MIREX contest and it is quite
an arduous challenge because of its subjectivity and the in-
fluence of social and cultural factors. In a paper presented
at ISMIR [1], we explored how a content-based similarity
measure can help to classify by mood a collection of mu-
sic files. In the algorithm submitted, we train a SVM with
many descriptors empirically selected.

2 OVERVIEW

From audio data (22kHz Mono 30 seconds excerpts), we
extract an extensive set of features. To know which fea-
tures are relevant, we have made a previous analysis using

different selection methods on our own annotated databases.

This algorithm extracts 133 features detailed in the next
section. Then we normalize them and finally we train a
SVM model. We try to optimize the parameters of the
model using a grid search method detailed in section 2.2.
The algorithm is implemented in C++ and compiled as a
Win32 binary.

2.1 Feature Set

All the features used in this submission have been se-
lected based on results obtained empirically with the ex-
emplar set provided and our databases. Using several fea-
ture selection methods in WEKA (PrincipalComponent,
InfoGainAttributeEval, CfsSubsetEval, SVMAttributeE-
val) we have sorted out 133 features of different kind.
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2.1.1 Spectral Descriptors

In our experiments, spectral descriptors were particularly
helpful to classify by mood the exemplar songs provided.
We decided to use:

-Spectral centroid, crest, flux, rolloff, skewness

-HFC (High Frequency Content)

-Spectral Strong peak [2]

-MFCC

-Bark Bands

-Energy Band Ratio

-FlatnessDB [3]

2.1.2 Loudness Descriptors

Testing with our databases we discovered that loudness
helps to discriminate between some mood categories. For
instance, in the MIREX categories, songs from Cluster 5
are rather loud. Here is the list of descriptors computed:

-RMS

-Loudness from BarkBands

-Dynamic Complexity (fluctuation of the Loudness)

-Larm [4]

-Leq [5]

2.1.3 High Level musical Descriptors

Mood is a quite abstract and subjective categorization. For
that purpose some high level descriptors were used, like
Danceability [6]. Moreover tonal descriptors [7] like the
mode (major or minor) and the key strength were prof-
itable as one can expect.

2.1.4 Temporal Descriptors

Finally we also extract temporal descriptors like zero cross-
ing rate, onset rate and BPM.

2.1.5 Statistics

Most of these features are extracted using windowing. Af-
terward we compute statistics of these values (min, max,
mean, variance, derivative variance, second-derivative vari-
ance). The decision to keep or not each value is made
using feature selection methods in WEKA as previously
mentioned.



2.2 Classification

Once the features extracted and normalized, we train a
Support Vector Machine model. We use the libsvm [8]
library. According to preliminary tests, the best results
were achieved by the C-SVC method with the RBF kernel
(Radial Basis Function). Consequently we use this config-
uration in our algorithm. Then to decide which values to
choose for the cost C and the ~ of the kernel function, we
implemented a grid search algorithm like one suggested
in [9]. We keep the parameters that obtain the best accu-
racy using a 10-fold Cross Validation on the training set.
Finally when the optimal parameters are found, we train a
SVM model and use it to predict the mood categories.

3 ANALYSIS OF THE RESULTS

Our submission is ranked second in terms of accuracy. All
the results are listed in Table 1.

3.1 Overall classification

| Participant | Accuracy |
IMIRSEL M2K knn 47.17%
IMIRSEL M2K svm 55.83%
Cyril Laurier, Perfecto Herrera 60.50%
Kyogu Lee 1 49.83%
Kyogu Lee 2 25.67%
Lidy, Rauber, Pertusa, Ifiesta 59.67%
Michael Mandel, Dan Ellis 57.83%
Michael Mandel, Dan Ellis spectral | 55.83%
George Tzanetakis 61.50%

Table 1. Raw Classification Accuracy Averaged Over
Three Train/Test Folds

3.2 Confusion matrix

To better understand the strong and weak points of the
algorithm, Table 2 describes the mood clusters, and Table
3 the confusion matrix.

Cluster 1 | passionate, rousing, confident
boisterous, rowdy

rollicking, cheerful, fun

sweet, amiable/good natured
literate, poignant, wistful
bittersweet, autumnal, brooding
humorous, silly, campy

quirky, whimsical, witty, wry
aggressive, fiery, tense/anxious
intense, volatile, visceral

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Table 2. Description of the mood clusters

We notice that the best predictable categories are clus-
ter 3 and 5, which correspond roughly to sad and aggres-
sive. The other clusters were more difficult to predict as

Truth/Predicted 1 2 3 4 5

Cluster 1 458 | 11.7 | 50 | 17.5 | 20.0
Cluster 2 10.8 | 50.0 | 11.7 | 27.5 | 0.0
Cluster 3 1.7 | 11.7 | 82.5 | 4.1 0.0
Cluster 4 100 | 31.7 | 42 | 533 | 0.8
Cluster 5 183 | 1.7 2.5 6.7 | 70.8

Table 3. Confusion Matrix, horizontally the distribution
of the prediction for a given Cluster

one can expect listening to the examples. Consequently
all the algorithms perform better with this two clusters.
The category with the worse accuracy is cluster 1 often
predicted as cluster 5. This makes sense as there are some
acoustic similarities. Both are energetic, loud and many
of both use electric guitar. Looking at the other submis-
sions the same confusion appears. Moreover there is a
clear confusion between cluster 2 and 4. Looking at the
mood adjectives of this clusters, we can notice a possi-
ble semantic overlap. For example, using Wordnet !, we
find that fun (cluster 2) and humorous (cluster 4) share the
synonym : amusing. Besides humorous is a synonym of
funny. We can observe this confusion also in the other al-
gorithms results. To sum up we can argue that there are
three main points :

1. Cluster 3 and 5 are the most predictable

2. There is a problem to predict Cluster 1 because it is
close to Cluster 5 (acoustic similarities)

3. There is a confusion between Cluster 2 and 4 (pos-
sible semantic overlap)

3.3 Runtime

The submission is far from being optimized in terms of
time. It runs more than 60 times slower than the most ac-
curate algorithm. There are several reasons for that. The
first is the grid search algorithm. It tries all the possibil-
ities of C and ~ mentioned in 2.2 (that is 360 combina-
tions), and evaluates each pair with several 10-folds Cross
Validations (two in this version). Finally a runtime error
forced us to disable the compiler optimization, reducing a
lot the speed of the executable. We believe that by narrow-
ing the range of the grid search, doing only one CV and
optimizing the build, we could reduce the computational
cost to an acceptable value with the same accuracy.

4 FUTURE WORK

Many things can be tested and improved. The first refine-
ment would be to pre-train a SVM model with the exem-
plar set. Afterwards, combining the probabilities from the
SVM model trained with the training data and the prob-
abilities from the pre-trained model, we should increase
the accuracy. Then, If we still stick to this kind of ap-
proach, we can imagine an online feature selection instead

! http://wordnet.princeton.edu/



of the offline pre-selection. This would probably increase
the accuracy of the overall system and allow us to add
more descriptors without doing again the manual empiri-
cal analysis. Finally, we can think to try different classi-
fiers (online or offline), and above all to add descriptors
designed according to knowledge about mood perception
and the related musical attributes.
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