
Recursive Geometric Algorithm for Estimating Melodic Similarity

Kjell Lemström and Niko Mikkilä
C-BRAHMS Group, Department of Computer Science

P.O.Box 68 (Gustaf Hällströmin katu 2b)
FIN-00014 University of Helsinki, FINLAND
{klemstro,mikkila}@cs.helsinki.fi

Abstract
This extended abstract gives an overview on a content-based
retrieval algorithm for symbolic music, developed in the C-
BRAHMS group [1], that took part in the Query by Sing-
ing/Humming task of the MIREX 2007 contest. Given two
excerpts of symbolically encoded monophonic or polyphonic
music, the query pattern and the target music, the purpose
of this algorithm is to find musically relevant occurrences of
the query pattern within the target music.

Keywords: MIREX 2007, Melodic Similarity, Geometric
Matching

1. Introduction and Background from
MIREX 2006
2. Recursive Algorithm
The recursive search algorithm that we submitted to the QBSH
task uses a geometric piano-roll representation of music, but
it does not maximize the overlapping in the same way as
our P3 algorithm does. Instead it performs an exhaustive
depth-first search trying to scale the pattern note-by-note to
’fit’ the target song, with costs applied to local time-scaling,
note duration changes and pitch-shifting. Clearly irrelevant
branches are cut with simple heuristics while searching, which
keeps the average running time in an usable range, although
the worst case time complexity is O(nm2).

First the algorithm divides the piano-roll representation
into tiles that have a height of one MIDI pitch level and
a width chosen so that there would not be many notes in
one tile. A pointer to the first note that starts in each tile
is stored to a table and subsequent notes at the same pitch
level are linked together. This tile table is used for hashing:
quickly finding notes that start within a specific range in the
target music. The tile table size is a compromise between
quick lookups and space consumption. We used a static tile
length of 100 ms but a more optimal value for each pitch
level could be chosen by scanning through the target music.

Next the target music is searched for the best occurrance
of the pattern by checking recursively for a match at each
note in the music, starting with each note in the pattern. For
note Ti in the target music and note Pj in the pattern, the
recursive check is started by calculating the expected pitch
and starting time interval of the next matching note, or mul-
tiple notes when gaps are allowed in the matches. All po-
tentially matching notes are looked up from the tile table,

match score is updated and the same check is executed re-
cursively for each of the notes, starting at the next position
in the pattern.

The most adjustable part of the algorithm is the way how
the following potentially matching notes are picked and scor-
ed at each recursion level. This procedure can be weighted
by the already matched part of the pattern or it can be done
independently for each position. To calculate the expected
pitch level, we simply take the pitch interval between Pj+1

and Pj , and add that to the pitch of Ti. Similarly, the dif-
ference between start times of the consecutive notes in the
pattern is scaled in proportion to previously matched notes
and added to the start time of Ti.

Pitch and tempo shifts are handled by retrieving all notes
within a certain range from the expected position: ± 2 pitch
levels and the delta time scaled by 0.5 – 2.0. Notes that
start outside this area are not considered further at that point
of recursion. Each melody line that continues from the re-
trieved notes is checked recursively and the match scores
are updated. Notes that are closest to the expected note po-
sition and have similar duration to the corresponding note in
the pattern receive the best score. This is done by multiply-
ing together factors derived from all these differences. 1.0
is a perfect match of a note and 0 is a complete mismatch.
Therefore the whole pattern has a maximal score of m− 1,
and match scores are normalized by dividing them with this
value.

3. Results and Analysis
In this section we analyze results from the MIREX QBSH
contest. More information about the tasks and evaluation
methods can be found through task descriptions in the MIREX
Wiki. Abstracts from all the participants are published in the
result pages.

4. Acknowledgments
Our best thanks to IMIRSEL for organizing MIREX 2007
and to Xiao Wu and Roger Jang for their contributions to
the QBSH task.

References

[1] K. Lemström, V. Mäkinen, A. Pienimäki, M. Turkia and E.
Ukkonen, “The C-BRAHMS Project,” in ISMIR 2003 Fourth



Int. Conf. on Music Inf. Retr. Proc., Oct. 2003, pp 237-238,
See: http://www.cs.helsinki.fi/group/cbrahms/

[2] E. Ukkonen, K. Lemström and V. Mäkinen, “Sweepline the
Music!.” Computer Science in Perspective — Essays dedi-
cated to Thomas Ottmann, vol 2598, pp 330-342, Springer-
Verlag, 2003


