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ABSTRACT

We present a graph spectral approach in which melodies
are represented as graphs, based on the intervals between
the notes they are composed of. These graphs are then
indexed into a database using their laplacian spectra as a
feature vector. This laplacian spectrum is a good represen-
tative of the original melody. Consequently, range search-
ing around the query spectrum returns similar melodies.

1 REPRESENTATION

Our goal is to provide a sufficiently abstract representa-
tion of a melodic line that actually makes sense from a
musical point of view. With this aim, we start looking
just at melodies, not considering the rhythm. Melodies
are generally studied from a pitch sequence/contour point
of view. Our approach is different: we take as a starting
point the interval structure, by which we mean the net-
work of connections between pitches. We remark that
melodies use only a subset of all possible connections,
and with different frequencies. To model such relation-
ships we use graphs, which have various and significant
applications throughout mathematics, computer science,
and physics. As such, the graph is a projection of the
time-dependent concept of melody to a time-independent
concept of intervallic structure. The next level of abstrac-
tion is to leave out pitch class information so that only
the “interval connectivity” of the melody remains, and this
means that certain operations such as inversion, transpo-
sition, retrogradation, other kind of permutations in the
pitch class set and (some) shifting of fragments does not
affect the graph. In this perspective what we are modelling
is a global, time-independent signature of the melody [8],
[6] [9]. Melodies that display a similar interval behaviour
have similar graphs, for example melodies in which there
are one or two central notes (with many connections) and
a number of peripheral notes (few connections).

Let M be a melodic sequence of length m = |M | and
consider the sequence of pitches {pj}j∈I , {I = 1, ...,m}.
Then let V = Z12 be the (metric) space of pitches, or
pitch classes, in the 12-tone system. We define the graph
G with vertex set VG = V and edge set whose elements
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are the edges aj such that

aj :
{

pj → pj+1 for every couple (pj , pj+1) ⊆ M
pm → p1 for the couple (pm, p1)

where j = 1, . . . ,m− 1 (see also [1] and [4]).
The arrow am : pm → p1 does not represent an actual

interval in the melody but it has been added for symmetry
reasons and in order to take into account the relationship
between the last and the first note as well, which otherwise
would not have been reflected in the model.

2 INDEXING

The graph representation described up to now is a geo-
metric one. In order to allow computations with this rep-
resentation, we need to associate an algebraic structure to
it. The most common algebraic structure to represent a
graph is the adjacency matrix.

The adjacency matrix A(G) of a graph G is a square
matrix of size equal to the order of the graph and where
the entry (i, j) represents the number of oriented edges
from vertex i to vertex j. This adjacency matrix therefore
contains all the information to reconstruct the connectivity
of the graph. A matrix closely related to the adjacency
matrix is the laplacian matrix L(G), computed as L(G) =
D(G)−A(G), where D(G) is the degree matrix of G. The
degree matrix is also a square matrix of size equal to the
order of the graph, but all values are zero except for those
on the main diagonal. Here, the entry (i, i) represents the
number of outgoing edges of vertex i.

Given the laplacian matrix of a melody graph, the ques-
tion remains how to compute the similarity to another melo-
dy. For this purpose, we first compute the eigenvalues
of the laplacian matrix and sort them by magnitude. 1

Hereby, we obtain the laplacian spectrum of the graph,
that is known to reflect a number of important proper-
ties of the graph. These properties include the diame-
ter (related to the second smallest eigenvalue), mean dis-
tance, minimum degree and algebraic connectivity. Fur-
thermore, the spectrum is invariant under permutations of
the matrix (i.e. swapping columns or rows). Together
with the absence of pitch information stored in the matrix,
this makes the representation invariant under transposi-
tions and note permutation. This is an important property,

1 Since the graphs are directed, the laplacian matrix is not necessar-
ily symmetric. Consequently, some of the eigenvalues may be complex
numbers and there exist multiple strategies for sorting these. As in [10],
we sort these eigenvalues by modulus.



because as pointed out before, our concept of similarity
is also independent from note permutation and transposi-
tion.
Our main motivation for encoding the topology of a graph
using the laplacian matrix comes from the fact that lapla-
cian matrices are more natural, more important, and more
informative than other matrices about the input graphs [7].
Previously, Godsil and McKay [3] and more recently Hae-
mers and Spence [5] have also shown that the laplacian
matrix has more representational power than the adjacency
matrix, in terms of resulting in fewer cospectral graphs.
Recall that two graphs are called cospectral (or, isospec-
tral) if they have the same eigenvalues.

Given a query graph and a large database, the objective
of an indexing algorithm is to efficiently retrieve a small
set of candidate matches, that share topological similarity
with the query. As pointed out, we encode the topology of
a graph through its laplacian spectrum, which is used as
a signature for the database object. This spectrum can be
seen as a point in a high dimensional space. To compute
similarity between two graphs, we compute the Euclidean
distance between their signatures, which is inversely pro-
portional to the structural similarity of the graphs. There-
fore, for a given query, retrieving its similar graphs can be
reduced to a nearest neighbor search among a set of points.
A set of candidate matches can now be found without hav-
ing to inspect the entire database. For more details on this
indexing strategy, the reader is referred to [2].
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