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ABSTRACT

This paper describes a submission to the 2008 Music Infor-
mation Retrieval Evaluation eXchange in the Multiple Fun-
damental Frequency Estimation Task.

1 OVERVIEW

This is a new system which began development in the Spring
of 2008. The initial focus was to perform real-time MIDI
transcription of guitar music. The system has been gener-
alized slightly for submission to MIREX, but the emphasis
remains on relatively simple feature calculations and fast es-
timation.

2 FEATURES

Various features are computed each 441 frames or 10 ms
of audio. The base feature vector x f computed for frame
f is the first 180 frequency bins of the magnitudes of the
short-term Fourier transform over a 2048 sample frame. In
addition to this base feature vector, the following features
are computed for each frame
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dx f is the vector difference between the current feature
vector and the previous one. n f is the norm of the feature
vector. δ f is the norm of the difference between the current
and previous feature vectors. s f is a scaling parameter mea-
suring the projection of the current feature vector as com-
pared to the previous feature vector. r f is a measure of the
relative difference in the feature vector norms. Finally, p f is
a peak indicator which compares the current frame value of
r f with the average of preceding and following values. This

peak indicator is similar to the Nonlinear Energy Operator
described in [2].

3 NOTE PREDICTION

3.1 Frequency Prediction

As in [3], note prediction is treated as a classification prob-
lem, instead of a problem of estimating the fundamental fre-
quencies. The underlying system estimates the MIDI note
numbers detected in each frame of audio. To meet submis-
sion guidelines, the MIDI note numbers are converted to fre-
quencies corresponding to perfectly tuned notes.

Each pitch has a model associated with it computed by
scaled averages of audio samples. Frames are scored against
these models to determine which pitches are present in the
frame.

With scaled averaging, the model for a particular pitch is
generated from a large number of sample frames taken from
an instrument playing that note. The training data contains
samples at multiple note attack levels and multiple distances
between the note onset and the frame onset. The model for a
particular pitch is computed by normalizing each individual
feature vector at that pitch to have a unit height, averaging
the unit height vectors together, and normalizing the result-
ing average vector to have unit length. More formally, the
model vector mp for a specific pitch p is computed from
samples xi with pitch labels yi as follows
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In the simplest case, for a single note the predicted pitch
pest for a feature vector x is then determined as the one sat-
isfying
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For multiple notes, a frame profile is built up note-by-
note iteratively. This is similar to [1], where the single best
scoring note is determined from the feature vector, then the
feature vector is modified to “remove” the effects of that



pitch. The remainder is then rescored until the desired num-
ber of notes have been predicted. With the non-linear scor-
ing metric in (1), a slightly different approach is required. In
particular, a base profile basei at iteration i stores the feature
vector representing the pitches which have already been de-
tected for the current frame. Pitches for iteration i are then
scored as follows with the initial base set to a zero vector
base0 = 0.
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Additionally, each iteration does not need to include mod-
els of just single pitches. In combined scoring, models are
also developed from frames where pairs of notes are sound-
ing together. Each iteration starts by computing a ranked
list of pitch scores scorei. Note combinations are generated
by combining highly ranked pitches and scoring the combi-
nation. If the best combination scores better than the best
single-pitch score, the combined pitches are added to the
estimated pitches and the corresponding combined feature
vector added to the base.

Iteration stops when the best score is no better than a
score against a sentinel zero model vector

mØ = 0

Choosing this as a cutoff is effectively the same as choos-
ing the cutoff to be the case when the remainder of the frame
is closer to the zero vector than it is to all other pitches in the
model. Analysis of the single note model and combined note
model methods on a guitar music corpus showed the need to
introduce a scaling factor σ for the sentinel to be able to
control the trade off between precision in recall. Low re-
call is sometimes an indication that the termination criteria
is too strict. In particular, deletion errors are high because
the algorithm is deciding there are no more notes to estimate
when there really are. The scale factor σ is used to multiply
the sentinel score before comparing with the other scores.
Higher values for σ therefore means a more lax stopping cri-
teria (since the best score is the lowest score). Higher values
therefore minimize deletes and increase recall (at the possi-
ble consequence of more substitutions) while lower values
generally reduce inserts, increase precision and decrease re-
call.

3.2 Note Onset Prediction

Analysis of the guitar music corpus shows that p f thresholds
provide high correlations with frames having note onsets or

Table 1. Algorithm Results
corpus corpus Nre f P R
guitar 1,521,816 .595 0.683
piano 229,986 0.723 0.674

development 19,300 0.533 0.491
MIREX 2008 256,390 0.481 0.570

terminations in them. Based on this information, notes are
estimated for contiguous blocks of frames.

Specifically, the raw feature set is computed every 10 ms
and the p f threshold is used to determine contiguous blocks
of frames which are estimated to be sounding the same set
of notes. The note prediction algorithm is performed on a
subset of the frames in each block to sample the hypothe-
sized notes. The number of notes for each frame in the block
is taken to be the average number of notes from the sam-
pled frames. Since the notes for each frame are estimated
in decreasing prominence order, the notes for the block are
estimated from the sampled frames by weighting the notes
in decreasing value based on the order of the notes in the
frame.

Each block then has one set of notes associated with it
and all of the frames within that block are reported as those
same notes.

This approach has not yet been extended to predict indi-
vidual note onset and termination times as in track 2.

4 RESULTS

The system was submitted with a model created from sam-
pled piano and guitar notes from Apple’s Logic Studio prod-
uct. Four sampled pianos and eight sampled guitars were
combined to come up with models for each of the MIDI
pitches from 24 to 97. Testing on independently collected
piano and guitar MIDI file corpora showed better perfor-
mance than the development set. Not surprisingly, the ul-
timate MIREX results showed performance similar to that
of the development set. Unfortunately, the piano selections
used in track 2 are not scored for track 1 for comparison
purposes. The details of track 2 do show however that the
piano selections give much better results for the submitted
algorithms than the full set of selections for track 2. This
implies that the piano selections may be inherently “easier”
to predict than the other instrument selections.

Table 1 shows the result of this algorithm and model
against the various training corpora and final MIREX re-
sults. Eight of the 14 remaining submissions scored better
than this submission with statistical significance.



4.1 Performance

The system was implemented in C++ using the vector op-
erations provided in the Accelerate Framework in Mac OS
X. Estimation of a one minute audio file takes about 1.5
seconds of (single-threaded) processing time on a 2.8 GHz
Quad-Core Intel Xeon processor. The MIREX results were
performed on a 1.83 Ghz Intel Core 2 Duo Mac with a run-
time of 99 which was more than 9 times faster than the next
fastest algorithm with a run time of 955.
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