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ABSTRACT

This paper describes our method, submitted to MIREX 2008
task “Multiple Fundamental Frequency Estimation & Track-
ing”. This task restricted the problem of Multiple F0 Esti-
mation and Tracking to three cases: i) Estimate active fun-
damental frequencies on a frame-by-frame basis; ii) Track
note contours on a continuous time basis (as in audio-to-
midi); iii) Track timbre on a continuous time basis. The
presented method is the first genetic algorithm approach to
multi-timbral music transcription and is based on a previ-
ously published genetic algorithm approach for automatic
music transcription originally designed to transcribe piano
songs. This algorithm was adopted to support different tim-
bres.

1 INTRODUCTION

Music Transcription is the process of extracting the musi-
cal score of an acoustical music signal. In Automatic Music
Transcription musical notes are extracted from the musical
signal by a computer.

Although traditional methods to Polyphonic Music Tran-
scription rely mainly on digital signal processing techniques,
Music Transcription can also be addressed as a search space
problem, where the goal is to find the notes of the musi-
cal signal. Search space approaches to this problem may
seem impracticable due to the huge (almost infinite) size of
the search space. Nevertheless Genetic Algorithms[1] have
proven to be an excellent tool in these problems since they
only need to use a small subset of the entire search-space to
find good solutions. This kind of approach can also be used
as a mean to improve other existing techniques, using their
results as the starting point.

The submitted method for polyphonic music transcrip-
tion is based on a previously published Genetic Algorithm
approach[2], which was designed for polyphonic piano tran-
scriptions. For the task “Multiple Fundamental Frequency
Estimation & Tracking”, the algorithm was adopted to sup-
port different timbres. Since the additional features of the
algorithm exponentially increase the the search space of the
problem, the Gene Fragment Competition operator[3] was

implemented to improve the results as well as other opti-
mization and fragmentation techniques techniques, which
will be described on the following sections.

2 METHOD DESCRIPTION

Our method will be briefly explained here. For more details
and information please see [2].

2.1 Avoid Harmonic Overfitting

In a previous proposed Genetic Algorithm approach to Poly-
phonic Music Transcription, Reis et al.[2] noticed that the
genetic algorithm tends to create additional notes (with lower
amplitudes) in harmonic locations of the original notes to
overcome the timbre differences between the internal sam-
ples and original piano sounds.

In order to solve this problem we have created harmonic
gains, which boost or cut the value of the first 20 harmonic
peaks. This acts almost like an equalizer, but instead of op-
erating on fixed frequency bands, it operates on each note
harmonic. From the implementation point of view, this is
not done with real filters, but by changing the values of the
FFT bins that correspond to the note harmonic locations.

This means, that each chromosome, besides having a se-
quence of note events as their candidate solution to the prob-
lem, also includes additional parameters to help the internal
synthesizers to get a timbre more similar with the original
instrument (see Figure 1). The gain of the F0 of the note is
always 1.

2.2 Inharmonicy Evolution

Sometimes the harmonics are not located in integer multi-
ples of the Fundamental Frequency. Those harmonics are
often shifted some bins to the left or to right of the real mul-
tiple corresponding frequency bin. To solve this problem,
the amount of shifting for each harmonic in the harmonic
structure was also encoded within the chromosomes, among
with the harmonic structure (see Figure 1). This way each
Individual had his own set of synthesizers with complete



Figure 1. Encoding of the Individual with the Harmonic
Structure.

evolving harmonic structures towards the original synthesiz-
ers and also with evolving notes towards the original song’s
notes. The shift of the Fundamental Frequency of the note -
F0 - is always 0.

2.3 Multi-Timbre Support

Since the evaluation files of the task “Multiple Frequency
Estimation and Tracking” have several and different instru-
ments: piano, bass, acoustic guitar, flute, violin, cello, vi-
ola, clarinet, oboe, horn and bassoon, we decided to create
an internal synthesizer for each instrument. The information
about which synthesizer plays each note was encoded as a
note event parameter (see Figure 1).

The internal synthesizers were made from samples of the
Musical Instrument Sound Database - RWC Music Database
[4]. The harmonic structure of each synthesizer was en-
coded inside the individuals genome (see Figure 1) to avoid
the harmonic overfitting in each instrument.

2.4 New Recombination and Mutation Operators

By introducing the harmonic gains, the harmonic shifts also
the timbre information in the individuals genotype, recombi-
nation and mutation must support those additional features:

2.4.1 Recombination

The recombination operator still splits the note events by
applying a random point of cut in time as it already did.
Two more random points of cut are used for each harmonic
structure: one for splitting the harmonic series and another
for splitting the harmonic shifting.

2.4.2 Mutation

Regarding mutation operator, three new mutations were cre-
ated: one that changes and harmonic gain up to ±0.50, an-
other which changes the harmonic overfitting up to ±3bins
and one mutation that changes the instrument of a note.

2.5 Note discard

Note discard was also implemented to avoid the harmonic
overfitting. Note discart is based on the idea that within the
note local range, most notes have similar dynamics. Consid-
ering that each note has a dynamic scale between 1 and 128
(as in MIDI), this feature will discard all notes present at
transcription that have a dynamic difference of 20 between
its note dynamics and the maximum value of dynamics of
other notes existing during the note duration.

2.6 Dynamic Range

Since harmonic overfitting can also be caused by noise, weak
harmonics or even harmonics frequency neighborhood, a
dynamic range feature was also implemented, where each
time frame the FFT bin with the highest value is used as ref-
erence, and all bins with values 40dBs below this reference
have their values are set to 0.

2.7 Fitness Function - Individual Evaluation

To evaluate an individual some kind of comparison between
his synthesized stream and the original stream must be done:
both are cut in time frames with 4096 samples (fs = 44.100kHz)
and an overlapping of 75%, a Hanning window is applied to
decrease spectrum leakage and the fitness values are based
on the difference between the FFT bins over time (Equation
1). Additional work has been done in exploring other fit-
ness domains (like: FFT with logarithmic scale, Cepstrum,
SACF, ACF, etc.), but to the moment, linear FFT differences
presented the best results so far.

Fitness =
tmax∑
t=0

fs
2∑

f=27.5Hz

||O (t, f) | − |X (t, f) ||
f

(1)

Fitness value is computed from frame slot 0 to tmax,
traversing all time from the beginning to the end. The lower
part of the frequency spectrum is limited to the fundamental
frequency of the first note of the piano’s keyboard, i.e., the
fitness function is created using the difference of the FFT
bins in the frequency range between the lowest piano’s key-
board note (from MIDI-note 21 - 27,5 Hz - to 22.100 Hz -
the Nyquist frequency of 44.100 kHz).

Although Genetic Algorithms usually consider higher fit-
ness values for the best individuals, our approach considers



CL1 CL2 DRD EBD1 EBD2 EOS MG PI1 PI2 RFF1 RFF2 RK VBB YRC1 YRC2
Accuracy 0.36 0.49 0.5 0.45 0.45 0.47 0.43 0.6 0.62 0.21 0.18 0.61 0.54 0.62 0.67
Accuracy
Chroma 0.4 0.52 0.56 0.5 0.5 0.55 0.5 0.64 0.66 0.27 0.23 0.66 0.57 0.66 0.69

Table 1. Overall results task1

the opposite since we are trying to minimize the error be-
tween the original audio stream and the individual’s audio
stream.

2.7.1 Frequency Normalization

To avoid the increase of impact of higher octaves, since FFT
bins are not equally distributed by all octaves (higher oc-
taves are spread over much more FFT bins than the lower
octaves), it is important to create a frequency normalization
process. The division by f in Equation 1 acts as a frequency
normalization. The |O(t, f)| is the magnitude of frequency
f at time frame t in the source audio signal, and |X(t, f)| is
the same for each individual’s audio signal.

3 IMPLEMENTATION

In order to decrease the complexity of the problem, several
divide-and-conquer techniques were applied: it is easier to
transcribe one second of music rather than transcribing an
whole song. Each 30 second music fragment is splitted
into 20 fragments of 1.5 seconds, the algorithm transcribes
each fragment and then merge each fragment solution into
a global solution (similarly with the Parisian approach[5]
and with the system proposed by Fonseca[6]). Finally, in
order to solve the frontier issues between fragmens, an hill-
climber is applied on the notes near the fragment borders, as
proposed by Fonseca[6].

To increase the performance, the algorithm employed in
each fragment is based on the Gene Fragment Competion[3]
approach. With the inclusion of the harmonic structures in-
side the individuals genome, we had to adopt the Gene Frag-
ment Competition operator to work with non-decomposable
data such has the harmonic structure of each synthesizer.
Therefore, instead of creating just one individual with the
best part of both parents, our new operator creates two new
individuals. Both have the same notes, which are the best
parts of each parent, and different harmonic structures, gen-
erated in the same way the classic “1 point of cut” crossover
operator[1] works.

4 RESULTS

The main target of our submission was the Piano Transcrip-
tion subtask, since this algorithm was initially designed for
automatic transcription of piano music. Unfortunately the

Precision Recall Accuracy Etot Esubs Emiss Efa
PI2 0.88 0.69 0.66 0.36 0.05 0.26 0.05
PI1 0.88 0.67 0.64 0.38 0.06 0.28 0.05
EBD2 0.79 0.55 0.5 0.54 0.09 0.36 0.09
YRC2 0.77 0.81 0.69 0.4 0.08 0.13 0.19
EBD1 0.76 0.56 0.5 0.56 0.1 0.34 0.13
VBB 0.75 0.65 0.57 0.51 0.09 0.27 0.16
RK 0.75 0.77 0.66 0.41 0.1 0.13 0.18
YRC1 0.74 0.79 0.66 0.43 0.09 0.13 0.22
CL2 0.72 0.6 0.52 0.56 0.11 0.29 0.16
EOS 0.7 0.64 0.55 0.55 0.11 0.24 0.19
RFF1 0.64 0.29 0.27 0.79 0.12 0.6 0.07
RFF2 0.63 0.24 0.23 0.81 0.11 0.66 0.05
DRD 0.61 0.74 0.56 0.65 0.16 0.1 0.39
MG 0.56 0.67 0.5 0.71 0.2 0.13 0.39
CL1 0.4 0.84 0.4 1.61 0.16 0 1.44

Table 2. Detailed chroma results of task1

Piano Transcription subtask was cancelled due to lack of
participants (< 3). The results presented here are from the
adopted version of the algorithm to the multi-timbral music
(RFF1 and RFF2) for both task 1 and task 2.

Table 1 shows the overall summary results of the task1.
Although our algorithm do not performs very well, Table 2
shows that the precision of the proposed approach is above
60%, which means that around 63% of the pitches found
by our system are correct. Our system fails because only
29% of the original pitches (recall value) were found and
correctly classified by our system.

Table 3 shows the overall summary results of the task2.

5 CONCLUSIONS

In this extended abstract we presented the first genetic al-
gorithm approach to multi-timbral music transcription. Al-
though the algorithm can cope well with polyphonic piano
transcriptions, its adaptation to multi-timbral musical is on
an early state and needs more work to improve the tech-
nique. Additional operators (for instance: mutation opera-
tors) need to be tested and implemented for a more robust
transcription system.

In order to reduce the computational time, the algorithms
only performed 150 generations over each fragment instead
of the regular 1000 generations. We strongly believe that
this makes all the difference about obtained results.



EBD1 EBD2 EOS PI1 PI2 RFF1 RFF2 RK VBB YRC ZR1 ZR2 ZR3
Ave. F-measure (Onset-Offset) 0.176 0.158 0.236 0.247 0.192 0.028 0.032 0.337 0.197 0.355 0.261 0.263 0.278
Ave. F-measure (Onset-Offset Chroma) 0.189 0.169 0.268 0.251 0.195 0.038 0.042 0.352 0.208 0.362 0.297 0.3 0.313
Ave. F-measure (Onset Only) 0.417 0.384 0.503 0.47 0.396 0.14 0.132 0.614 0.521 0.552 0.518 0.52 0.53
Ave. F-measure (Onset Only Chroma) 0.47 0.429 0.561 0.52 0.446 0.177 0.168 0.655 0.547 0.576 0.575 0.577 0.586

Table 3. Overall results of task2
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