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ABSTRACT

In order to compare rhythmic patterns with a dissimilarity
measure that is continuous and supports partial matching,
one can adapt the Earth Mover’s Distance (EMD). Partial
matching is a useful feature in situations where, as in this
year’s “QBT” MIREX task, a query is given in the form of
an audio file from which onsets are extracted. The onset de-
tection might lead to both false positives and false negatives;
in both cases, it should be possible to ignore the onsets for
which no corresponding onsets exist in an otherwise similar
group of onsets.

1 COMPARING RHYTHMIC PATTERNS USING
THE EARTH MOVER’S DISTANCE

1.1 Representation of rhythmic patterns as point sets,
normalization, EMD

Rhythmic patterns are compared as follows:

1. Represent onset times as a sequence of one-dimensional
weighted points. The coordinate of each point reflects
the onset time, and the weight is constant (each onset
gets weight 1).

2. Before applying the EMD, normalize two point sets
by setting the first and last onset to fixed numbers and
adjusting the points in between such that the propor-
tions of onset times are preserved.

3. Calculate the Earth Mover’s Distance.
EMDd(A, B) =

minF∈F
Pm

i=1
Pn

j=1 fijdij

min(WA,WB) .

(d: ground distance, A, B: weighted point sets; F :
a flow; F : all possible flows; fij : amount of mass
carried from point i to point j; dij : ground distance
between points i and j; WA, WB : total weight of set
A/B). For details, see [1].

See Figure 1 as an illustration of how rhythmic patterns
can be represented as sequences of onset times. Also, this
example illustrates a situation where partial matching is de-
sirable: in the third measure, the bottom variant has one
more note than the top variant, but otherwise, the rhythms
are still quite similar.
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Figure 1. Comparing rhythms using sequences of onset
times. Top: Ferruccio Busoni: Sonatina No.6: Chamber
Fantasia on Bizet’s Opera Carmen (3rd theme); bottom:
Georges Bizet: Carmen: Habanera; middle: two sequences
of onset times representing the incipits at the top and bot-
tom. A possible numeric representation of the two series of
onset times: Busoni: (0, 3, 6, 8, 10, 12, 15, 18, 20, 22, 24,
27, 30, 31.5, 33, 34.5, 36, 39, 42); Bizet: (0, 3, 6, 8, 10, 12,
15, 18, 21, 22.5, 24, 27, 30, 31, 32, 33, 34.5, 36, 39, 42).

1.2 Finding rhythms anywhere in a piece: Segmentation

Section 1.1 explains how one can compare rhythmic pat-
terns of approximately the same length. Usually, for finding
pieces of music containing a given rhythmic pattern, one
will want to find relatively short patterns that are contained
somewhere within a large piece of music. To achieve this,
one can segment a long onset sequence representing a whole
piece of music into short, overlapping segments, possibly of
varying length. The query can then be compared either di-
rectly to those segments (if its length is similar to the seg-
ment length), or it can also be segmented in the same way.

1.3 Optimized vantage indexing and tunneling

The EMD is computationally expensive, especially for large
point sets. The variant described above (EMD on sets of 1-
dimensional points, where every point has weight 1), which
we call “Manhattan EMD”, is a prametric; the triangle in-
equality does not hold, and a distance of zero does not imply
identity. This makes it tricky to build a good index.

In [1], we show how one can achieve logarithmic com-
plexity for searching r-near neighbours with the Manhat-
tan EMD without any false negatives and reasonably few
false positives. The next few paragraphs will give a brief
overview.



1.3.1 Optimized vantage indexing for the l1 norm

The Manhattan EMD has metric subspaces: on sequences
of equal length, the Manhattan EMD is equivalent to the l1
norm. Therefore, one can use vantage indexing for search-
ing those metric subspaces.

Vantage indexing guarantees that no false negatives occur
if the triangle inequality holds; however, false positives are
possible.
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Figure 2. In this two-dimensional example, only the light
gray area is inhabited by database objects since only there
the second coordinate is greater than the first. The dark
gray ball around Q with a given radius can be created by
intersecting onion layers around V1 and V2 whose thickness
equals the radius.

For the l1 norm, one can eliminate all false positives by
ensuring that the vantage objects are placed in a way that one
can create exactly the interesting r-neighbourhood around
any query (and with any radius r) by intersecting onion-like
layers with thickness r around the vantage objects. For this
to work, the vantage objects need to be placed in an opti-
mum way. For example, one can put them into the corners
of the area that can possibly contain data items (this is a fi-
nite area because all coordinates are restricted to a certain
range due to the normalization).

1.3.2 Searching across dimensions with a tunneling tech-
nique

To search the whole Manhattan EMD space, instead of just
metric subspaces, for r-near neighbours of a query, one can
pre-calculate connections between nearest neighbours in dif-
ferent subspaces. One should probably limit the number of
dimensions to cross, both for keeping the database small
enough and for keeping search results meaningful.

If such connections between nearest neighbours in differ-
ent subspaces exist, one can search as follows:

1. Search the query’s own metric subspace using opti-
mum vantage indexing.

2. For searching higher metric subspaces, follow the links
from every item that was retrieved in the query’s own
subspace into higher-dimensional subspaces, and check
whether the linked items lie within the search radius.

3. Lower-dimensional subspaces can be searched by us-
ing optimized vantage indexing for finding items that
are close to projections of the query into the subspace
(or, alternatively, close to points that are linked to the
query by a tunnel).

Figure 3 illustrates how tunneling can introduce false pos-
itives and false negatives. In this example, we first search
Q’s own metric subspace for near neighbours and find P4

and P5. By following their respective links, we find the
higher-dimensional points P1 (a false positive) and P2 (a true
positive). We do not, however, find P3 (which is therefore a
false negative).

By adding the projections of higher-dimensional points
(here shown as hollow circles) to the database if their dis-
tance to the nearest lower-dimensional neighbour lies above
a threshold t and at the same time increasing the search ra-
dius by t, we can completely eliminate all false negatives.
The distance error of false positives is limited to 2t. Since
false positives can now only occur near the surface of balls,
the precision grows with the search radius.
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Figure 3. False negatives and false positives resulting from
tunneling, and how to avoid them.

2 IMPLEMENTATION FOR MIREX 2008

For the “Query by Tapping” task at MIREX 2008, it is known
that we are only looking for rhythmic patterns at the begin-
ning of MIDI files. Therefore, it is not necessary to segment
the data or the queries and find matching segments; instead,
it is sufficient to take a certain constant number of onsets
from each query (we use 17 since in most queries, there are
enough onsets for making this a good number). We match
these sets of 17 points (or fewer, if the query was shorter)
with the first 16 to 20 notes in each MIDI file. That is, we
allow up to one extra note in the query or up to three extra
notes in the data to be matched.

Since the database is small (little over 100 pieces), we
do not use the indexing technique described in Section 1.3.
This has the consequence that actually, if the query hap-
pens to be shorter than 17 notes, we allow even more extra
notes in the data to be matched – up to 18 extra notes if the
query has only 2 notes. This high number of allowed extra
notes might somewhat decrease the result quality for short
queries. Introducing a small penalty for crossing dimensions
could possibly lead to still better results.

Our algorithm matches the given “.onset” text files to
MIDI files; we do not attempt to extract onsets from audio
files ourselves.



3 MIREX 2008 RESULTS

Figure 4. Average mean reciprocal ranks; the Manhattan
EMD performs best among 5 submitted algorithms.

The MIREX 2008 results (see Figure 4) indicate that the
Manhattan EMD is indeed suitable for comparing rhythmic
patterns in cases where partial matching is needed (because
of misdetected onsets) and where continuity is useful (be-
cause of rhythmic inaccuracies that are introduced by man-
ual tapping).
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