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ABSTRACT

This extended abstract details a submission to the Music In-
formation Retrieval Evaluation eXchange in the audio tag
classification task, a new task introduced this year. We model
the problem as a multilabel classification task and employ
suitable learning algorithms from the Mulan toolkit 1 .

1 INTRODUCTION

Traditional single-label classification is concerned with learn-
ing from a set of examples that are associated with a single
label λ from a set of disjoint labels L, |L| > 1. In multil-
abel classification, the examples are associated with a set of
labels Y ⊆ L.

Multilabel classification methods can be categorized into
two different groups [3]: i) problem transformation meth-
ods, and ii) algorithm adaptation methods. The first group
contains methods that are algorithm independent. They trans-
form the multilabel classification task into one or more single-
label classification, regression or ranking tasks. The second
group contains methods that extend specific learning algo-
rithms in order to handle multilabel data directly.

The submitted system uses one algorithm from each cat-
egory; the RAKEL [4] problem transformation algorithm
for outputting binary predictions, and the MLkNN [6] algo-
rithm adaptation algorithm for outputting real valued affin-
ity scores, for each tag and audio clip pair. Algorithms are
obtained from the Mulan toolkit. An experimental compar-
ison of such algorithms for a different task (emotion/mood
detection in music) can be found in [2].

2 FEATURE EXTRACTION

For the feature extraction process, the Marsyas tool [5] was
used. The extracted features fall into two categories: rhyth-
mic and timbre.

1 http://mlkd.csd.auth.gr/multilabel.html

2.1 Rhythmic Features

The rhythmic features were derived by extracting periodic
changes from a beat histogram. An algorithm that identi-
fies peaks using autocorrelation was implemented. We se-
lected the two highest peaks and computed their amplitudes,
their BMPs (beats per minute) and the high-to-low ratio of
their BPMs. In addition, 3 features were calculated by sum-
ming the histogram bins between 40-90, 90-140 and 140-
250 BPMs respectively. The whole process led to a total of
8 rhythmic features.

2.2 Timbre Features

Mel Frequency Cepstral Coefficients (MFCCs) are used for
speech recognition and music modeling [1]. To derive MFCCs
features, the signal was divided into frames and the ampli-
tude spectrum was calculated for each frame. Next, its log-
arithm was taken and converted to Mel scale. Finally, the
discrete cosine transform was implemented. We selected
the first 13 MFCCs.

Another set of 3 features that relate to timbre textures
were extracted from the Short-Term Fourier Transform (FFT):
Spectral centroid, spectral rolloff and spectral flux.

For each of the 16 aforementioned features (13 MFCCs,
3 FFT) we calculated the mean, standard deviation (std),
mean standard deviation (mean std) and standard deviation
of standard deviation (std std) over all frames. This led to a
total of 64 timbre features.
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