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ABSTRACT

In order to extract the audio melody of a polyphonic mu-
sic mixture, we propose a source/filter model to fit the main
source. For MIREX 2008, we design 2 distinct systems. The
first system is based on a Gaussian Mixture Model (GMM),
allowing only one source-filter couple at each frame for the
main part. The second system, while keeping the source/filter
formalism, assumes that all the couples are potentially ac-
tive at any time, which is less optimal in our application.
Although the GMM seems more realistic, preliminary tests
show that the second model is not as computationally heavy
as the GMM, but still keeps good results. Perceptual source
separation results using these models however tend to show
that the second model better fits the signals in certain cir-
cumstances, such as vibrato performances.

1 INTRODUCTION

Extracting the main melody from a polyphonic music signal
can be defined as transcribing the notes that are played by
an instrument which has to be somehow “dominating” other
instruments from the mixture. This instrument can be in the
foreground according to different cues, such as its energy or
its frequency range.
During ISMIR 2004 and at MIREX 2005 and 2006, the eval-
uations for audio melody extraction showed there were sev-
eral possible approaches to the problem [1]. Most of them
are perceptually based, to a certain extend involving classi-
fiers. However few works have been done that involve gen-
erative models for the observed signals. We propose to fol-
low Ozerov [2] who tackled the problem by first separating
the desired source from the rest, and thereafter estimating
the pitch on the “monophonic” separated signal.
The general framework is therefore adapted from previous
works on source separation, especially voice/music sepa-
ration [3]. Our algorithms also take advantage of the har-
monic nature of the desired source: we included an explicit
source/filter model for the main source, while the background
music keeps a rather general generative model. A Viterbi
smoothing algorithm allows to control the continuity of the
melodic line. We propose two different models for the main
voice part: one which is directly derived from the Gaussian

mixture models (GMM) of the litterature, and one which is
based on an instantaneous mixture of all the possible basis
elements in a dictionary.
This paper is organized as follows: first we introduce the
models we consider for our submissions. The general prin-
ciples for the estimation of the parameters are then discussed.
We also describe the Viterbi algorithm used to retrieve a
smooth melody line. At last, we give some preliminary re-
sults on the development files for MIREX 2008.

2 SIGNAL MODELS

2.1 Mixture Model

We assume that the observed signal x is the instantaneous
mixture of two elementary signals: a signal corresponding
to the main source, or main voice, noted v, and one for the
background music noted m. We will also refer to v as the
“vocal” part, since it will often happen that the main instru-
ment is a human voice in the analyzed signals. The algo-
rithms are well suited for this particular application. We
therefore have: x = v + m.
This equation also holds for the short time Fourier transform
(STFT) X , V and M respectively: X = V + M . The mod-
els we propose essentially aim at constraining the shapes of
these STFT, more specifically for M we use a temporal rep-
etition constraint while for V we focus on the harmonicity
of the signal.

2.2 Background Music M

We recall here the model introduced in [4]: the background
music signal M is considered to be the instantaneous mix-
ture of R independent Gaussian sources Mr. Each of these
sources is centered and characterized by its power spectral
density (PSD), i.e. in our case its auto-covariance σMr

(f).
For a given frame t, an amplitude coefficient ar(t) 6= 0 is
associated to the corresponding source. Let Mt(f) be the
STFT of the background signal at frame t and frequency bin



f , then we write its likelihood:

p(Mt(f)) = Nc

(
Mt(f); 0,

R∑
r=1

ar(t)σMr
(f)

)

2.3 Vocal Part V , GMM framework

Our first submission uses the GMM framework as intro-
duced in [3] to model the vocal part V . We proposed a
source/filter that allows the algorithm to better fit our pur-
pose: in this generative model, the source element refers to
the excitation of the vocal folds and is therefore linked to
the fundamental frequency of the sound F0, while the filter
part is characteristic of the vocal tract shape. As in [4], we
discretize this space of possibilities such that we consider
K possible filter frequency responses: hk(f) and NF0 pos-
sible F0 or notes. The source DSPs are generated through
a glottal source model KLGLOTT88, which gives realistic
spectral combs σV,f0(f). As for M , we also include ampli-
tude coefficients bk,f0(t) for each frame and couple (k, f0).
The likelihood of the vocal part knowing the couple (k, f0)
is given by:

p(Vt(f)|k, f0) = Nc (Vt(f); 0, bk,f0(t)hk(f)σV,f0(f))

and the likelihood for the vocal partfor frame t is given by
the weighted sum: p(Vt) =

∑
k,f0

πk,f0p(Vt|k, f0), where
the a priori probabilities πk,f0 are here assumed to be equal.

2.4 Vocal Part V , IMM framework

We propose a second model which was derived from the
first one in order to find a solution that would be more ef-
ficient to compute. We came up with a formulation that
keeps the source/filter model within an instantaneous mix-
ture framework, which we will refer to as the instantaneous
mixture model (IMM). Moreover, we assume the amplitude
coefficient for one couple (k, f0) at frame t can be written
as the product of 2 separate amplitude coefficients, one for
the filter and one for the source part of the vocal model:
bk,f0(t) = ck(t)df0(t). The likelihood is then expressed as
follows:

p(Vt(f)) = Nc (Vt(f); 0, SV (f, t)) , where:

SV (f, t) =

(∑
k

ck(t)hk(f)

)∑
f0

df0(t)σV,f0(f)


3 PARAMETER ESTIMATION

We use a maximum likelihood (ML) criterion in order to
estimate the different parameters, for each of the models.
The principle is the same as what is described in [4], where
one can find updating rules for the parameters of the IMM.

To estimate the parameters in the case of the GMM, we use
an EM algorithm. However, apart from the expectation step
of the EM algorithm, the updating rules are quite similar for
both models.

4 MELODY ESTIMATION: SMOOTHING AND
PRUNING FALSE POSITIVES

We could use different strategies to infer the melody line
from the estimated parameters. The most straight-forward
being to choose the f0 that maximizes the a posteriori prob-
ability for the GMM and the amplitude coefficients for the
IMM. However, this leads to rather poor results and a better
strategy is to use a Viterbi smoothing of the melody line, as-
suming some sort of Markov model in the sequence of f0,
hence obtaining a trade-off between the smoothness of the
melody and its global energy in the signal.
We also parameterized the transitions between the possible
f0, thus penalizing jumps in fundamental frequencies for the
main melody, without disabling jumps for one note to the
other. We tried several parameter settings in order to find
the right way of parameterizing this weighting step. Other
designs for this part may involve supervised techniques and
other processes in order to take into account onsetting times.
Another mechanism permits to prune some spurious notes
by checking whether the energy of the signal to which they
correspond is high enough. The source separation frame-
work we use allows, through Wiener filtering, to obtain the
separated signals. Computing the energy for each frame of
the separated main melody and thereafter thresholding, we
can discriminate between spurious notes and true positives.

5 PRELIMINARY RESULTS

On the development set provided by the MIREX teams, i.e.
the ISMIR 2004 and MIREX 2005 development data sets,
we obtain results that are at the state of the art, compared to
the submissions from MIREX 2006, as can be seen in table
1.
A surprising result is that, even though the computational
time of the GMM is much higher, and despite the precision
of the model compared to the IMM, the results seem to be
significantly lower.

6 CONCLUSIONS

We proposed two new approaches to the audio melody ex-
traction task. These approaches are based on generative
models for both the vocal (or main melody) part and the
background music part. The differences between the two
proposed algorithms lie in the models: one uses a GMM,
while the other one is based on an instantaneous mixture of
the elements of the basis (IMM). The results are of the same



Participant Raw Pitch Acc. Raw Chr. Acc. Overall Acc.
IMM 82.3% 83.2% 75.5%

GMM 64.5% 71.3% 56.8%
Dressler 80.0% 82.9% 77.3%

Ryynänen 75.5% 78.2% 72.1%
Poliner 72.6% 75.7% 69.3%
Sutton 59.1% 62.5% 55.7%

Brossier 48.3 % 61.7 % 39.8 %

Table 1. Results for MIREX 2006 participants (test set) and
the proposed methods (development set).

order as the state of the art, especially the overall accuracy
that clearly benefits from the pruning step we describe in
this paper.
Note also that this technique is well suited for source sep-
aration, which makes it possible to adapt this main melody
detection to the task of multipitch detection, by iteratively
applying the algorithm to the separated residual correspond-
ing to the background music.
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