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ABSTRACT

This document describes a submission to the Music Infor-
mation Retrieval Evaluation eXchange in the Audio Chord
Recognition task. A set of chroma vectors representing the
pitch content of the audio file over time is extracted. From

these observations the chord progression is then estimated

using hidden Markov models. The system takes into ac-
count the presence of higher harmonics of pitch notes and
includes some music knowledge. In this approach, no train-
ing is needed.

1 INTRODUCTION

In Western tonal music, the chord progression determines
the harmonic structure of a piece of music. Analysis of

chord progression therefore plays a crucial role in the un-
derstanding of this music. Automatic chord recognition has

become a major field of MIR and many approaches have
already been proposed. The MIREX 2008 audio chord de-
tection task is a first step to define an accurate methodology
in order to make the comparison of the results possible. De-
tails about the system we present here can be found in [1]
and [2].

2 FEATURE EXTRACTION

The front-end of our system is based on the extraction of
a set of feature vectorst{roma vectors [3]) that represent
the audio signal. The audio signal is converted to mono.
We only consider frequencies abowe 7 H z, which corre-
sponds to a B1 midi note. The upper frequency limit is set to
1k Hz. Since the instruments may have been tuned accord-
ing to a reference pitch different from the standatdl =
440H z, it is necessary to estimate the tuning of the track.
Here, the tuning is estimated using the method proposed in
[4]. The sequence of chroma vectors over time is known as
chromagram. Existing methods to compute a chromagram
present some variances but follow in general two steps: first
a semitone pitch spectrum is either computed from the FFT
or obtained by the Constant Q Transform (CQT [5]) because
the center frequencies of the CQT are spaced according to
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the frequencies of the equal-tempered scale; then the semi-
tone pitch spectrum is mapped to the chroma vectors. As

proposed in [6], smoothing the semitone pitch spectrum pro-

vides a reduction of transients and noise in the signal. We

obtain a sequence of 12-dimensional vectors that are suit-
able feature vectors for our analysis.

3 MODEL

We consider an ergodic 24-states HMM, each state repre-
senting a single chord. The chord lexicon is composed of
24 Major and minor triads (C Major, C# Major, ..., B Ma-
jor, C minor, ..., B minor). Each state in the model gen-
erates an observation vector, the chroma feature, with some
probability. This is defined by thebservation probabil-

ities. The transitions between chords result from musical
rules that should be reflected in thate transition matrix.

The state-transition matrix we use is based on cognitive ex-
periments. Given the observations, we estimate the most
likely chord sequence over time in a maximum likelihood
sense.

3.1 Initial state distribution

Since we do not knowa priori which chord the piece begins
with, the initial state distribution is uniformly initiated at
+ for each of the 24 states.

3.2 Observation symbol probability distribution

The probabilitiesP(¢;(t,,,)|O(t,,)) are obtained by com-
puting the correlation between the observation vectoses (th
chroma vectors) and a set of chord templates which are the
theoretical chroma vectors corresponding tofhe 24 ma-
jorand minor triads. Each chord template is a 12-dimensiona
vector which contains the theoretical amplitude valuebef t
notes and their harmonics composing a specific chord. The
chord templates are constructed considering the presénce o
the higher harmonics of the theoretical notes it consists of
relying on the model presented in [7]: the amplitude con-
tribution of theh!* harmonic composing the spectrum of a
note is set t@.6" 1,



Chord symbol probabilities computation: At each time
instantt,,, we compute the correlation between the obser-
vation vectorO(¢,,) and the 24 chord templat€3T;, i €
[1,24].

For i=1...24, P(O(tm)|ci(tm)) = <O(tn), CT;i>

)

The 24 values?(O(t,,)|ci(t.,)) are normalized so that

ZP(O(tm)Ici(tm)) =1 2

3.3 State transition probability distribution

The chord transition matrix is obtained using values corre-
sponding to correlations between key profiles obtained from
perceptual tests by Krumhansl. These correlations wete firs
used by [8] to derive a key transition matrix.

3.4 Chord progression over time detection

The optimal succession of chords over time is found using
the Viterbi decoding algorithm [9] which gives us the most
likely path trough the HMM states given our sequence of
chroma observations.

4 ANALYSIS OF THE RESULTS

4.1 Task description

The mirex 2008 Audio Chord Detection task was divided
into two subtasks:

¢ in the first one the systems were pretrained and they
were tested against 176 Beatles songs

¢ in the second one systems were trained on 2/3 of the
Beatles dataset and tested on 1/3

Our system does not need any training, we thus participated
to the first subtask.

4.2 Evaluation measure

Overlap score was calculated as the ratio between the over-
lap of the ground truth and detected chords and ground truth
duration. A secondary score was calculated by ignoring the
major-minor variations of the detected chord (e.g., C major
== C minor, etc.).

4.3 Analysis of the results

A total of 8 algorithm were submitted to the first subtask,
and our algorithm obtained the fourth place. Note that si-
lence or no-chord segments were not estimated with our al-
gorithm. The differences in the results between the partic-
ipants are very small, probably because the approaches are
similar (using HMM): Bello and Pickens obtainé8% of
correct detected chords, Mehnésts correct, Ryynnen and
Klapuri 64% correct, Papadopoulos and Peet&3% cor-

rect, Khadkevich and Omolodi3% correct. The specificity

of the approach we proposed is that there is no training at all
whereas all the above-mentioned systems were pre-trained
on the test set (Beatles songs). This is a very important poin
since it is very difficult and time-consuming to create la-
beled training data for audio chord detection. Our method
was not among the fastest, however the running time is still
interesting: about 20% of real time, which is a lot faster
than most systems based on training. Our system compares
also favorably to trained-system. Indeed, 7 algorithmsewer
submitted to the second subtask. The approach proposed by
Uchiyama, Miyamoto, and Sagayama gave results largely
better than the other submitted algorithni@% correct).
Sheh and Ellis obtaine@5% correct. All the remaining al-
gorithms gave results abo6@% correct.
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