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ABSTRACT

This paper presents our submission to the MIREX 2008 Au-
dio Chord Detection task. The front-end of our system in-
corporates a novel feature extractor which uses multiple pitch
tracking techniques to extract for each frame a chroma pro-
file that is more robust against chroma contributions not
originating from fundamental frequencies but from harmon-
ics thereof. The back-end of our system implements a prob-
abilistic framework for the simultaneous recognition of chords
and keys. The system works with probabilities and density
functions derived from Lerdahl’s tonal distance metric and
consequently, it needs no explicit training.

1 IMPLEMENTATION OVERVIEW

Input wavefiles are converted to mono, resampled to 8 kHz
and split into frames. The frame length is 150 ms and the
hopsize is 20 ms. For each frame, the front-end calculates
a chroma profile. Consecutive frames are grouped per 10 in
so-called segments to improve the stability of the output and
to speed up the calculation. The average chroma profiles of
these segments are then supplied to the back-end.

The back-end generates a chord label for each segment.
This label represents one of four triads (major, minor, di-
minished and augmented) that can be defined for each of the
12 chromas. However, for the MIREX task only the major
and minor triads were withheld and the diminished and aug-
mented triads were mapped to a no-chord. The key output
of the back-end has been discarded as well.

The present implementation works offline, but it could be
changed into a streambased system with little or no perfor-
mance loss. It runs 96% real-time on an Intel Pentium M
1.86 GHz with 1GB of RAM. On average 13% of the time
is spent on the resampling step, 22% on the front-end and
65% on the back-end. Lots of opportunities for speed up are
available and have not yet been exploited.

2 THE FRONT-END OF THE SYSTEM

As in many other systems, the acoustic observations are
chroma profiles, but the calculation of these profiles differs
from what is commonly used. In its simplest form, such a

profile is just a log-frequency representation of the spectral
content folded into a single octave. However, the problem
with such a representation is that e.g. the third harmonic of
a pitch folds into a chroma that is located at +7 or -5 semi-
tones with repect to the fundamental, thus adding evidence
to a second pitch class that is not necessarily present in the
signal.

Our front-end uses the novel implementation proposed
by Varewyck et al [3]. It aims at maximally coupling the
higher harmonics to their fundamental frequency by the ap-
plication of multiple pitch tracking techniques. Ideally, if
that coupling were perfect, the chroma profile would only
represent notes that are actually played, and the chord de-
tection would mainly be a matter of pattern matching.

The values of the chroma profile are scaled such that they
add up to 1, making them insensitive to the intensity of the
sound. Fundamental frequencies lower than 100 Hz are con-
sidered to be bass-notes and are not allowed to contribute to
the profile. Although such bass-notes could make a signif-
icant addition to the chord, mostly they just repeat a note
from the higher registers or they do not contribute to the
chord (e.g. a walking bass), and therefore we argue that it
does more harm than good to include them.

A consequence of using a pitch tracker for chroma profile
generation is that if no frequency is supported as a funda-
mental frequency by the presence of higher harmonics, the
chroma profile will be a vector of zeros. At the moment,
such a profile does not yet cause the back-end to generate
a no-chord, but this is one of the planned improvements of
our system.

3 THE BACK-END OF THE SYSTEM

3.1 Overview

The back-end follows a unified probabilistic framework for
the simultaneous recognition of chords and keys. It was in-
troduced by Catteau et al. [1], and slightly modified since
then. The input is a sequence of chroma profiles each repre-
senting one segment. The profiles form a sequence of length
N of acoustic observations, denoted as X = {x1, . . . ,xN}.

The back-end is expected to retrieve the key label se-
quence K̂ =

{
k̂1, . . . , k̂N

}
and the chord label sequence



Ĉ = {ĉ1, . . . , ĉN} which meets the following condition

K̂, Ĉ = arg max
K,C

P (K,C)P (X|K,C)

The term P (X|K,C) is computed by an acoustic model and
P (K,C) by an a priori tonality model. By assuming xi

to be independent of kj , cj ∀i 6= j and by using a bigram
tonality model, this formula can be factorized into

K̂, Ĉ = arg max
K,C

N∏
n=1

P (xn|kn, cn)P (kn, cn|kn−1, cn−1)

The solution can then be found by a Dynamic Programming
search which retains at every segment index the optimal path
to each of the 1152 eligible key-chord pairs: 48 chords (4
types of triads for 12 pitch classes) times 24 keys (major
and minor key for 12 pitch classes). The final result is then
identified as the path ending in the key-chord pair with the
highest probability at the final segment index.

3.2 Acoustic model

The acoustic model expresses the likelihood of an observa-
tion given a proposed key-chord combination. The compo-
nents of the observation vector xn are assumed to be inde-
pendent of each other and of the key kn. This way the result-
ing acoustic probability reduces to the product of the prob-
abilities for all pitch classes. Since a pitch class does either
belong to the proposed chord or not, there are two probabil-
ity distributions to distinguish. These distributions are mod-
eled by single-sided Gaussians centered around X = 1/3 or
0 for a pitch class that does or does not belong to the chord
respectively. The reason for the factor 3 is that we expect
three pitch classes to contribute to the chroma profile of a
chord.

3.3 Tonality model

The tonality model describes the probability of different tran-
sitions between chord-key pairs in the output sequence. We
can further convert the model into a product of a key transi-
tion and a chord transition model:

P (kn, cn|kn−1, cn−1) =
P (kn|kn−1, cn−1)P (cn|kn, kn−1, cn−1)

Both transition models are derived from Lerdahl’s distance
metric [2] for measuring the dissimilarity between two key-
chord pairs. The underlying assumption of our system is
thus that transitions between similar key-chord combina-
tions tend to occur more frequently than transitions between
dissimilar combinations. This may be not the best possible
premise but it has the advantage of not requiring any train-
ing of the tonality model, and consequently, of not risking

to create a model whose quality depends too much on the
selection of the training set.

We assume on intuitive grounds that the influence of cn−1

on the key transition probability will be less than that of
kn−1, and therefore we simply ignore it.

The probability of staying in the same key is fixed (sys-
tem parameter), and the probabilities for going to one of the
different other keys are derived from the Lerdahl distance
between the chords on the first degree of the these keys. An
exponential is used to convert distances into probability es-
timates.

For the chord transition probability we again assume in-
tuitively that kn−1 accounts for less than cn−1 and kn, and
therefore we ignore it. We further make a distinction be-
tween chord pairs (cn−1, cn) that are both diatonic in kn

and others. The diatonic transition probabilities are derived
from the Lerdahl distance between chords in the same key,
but weighted by a function that favours chords comprising
the key tonic or dominant. Again an exponential is used to
convert distances to probability estimates. The probability
of all non-diatonic transitions is fixed and set to a value that
is lower than the smallest of all diatonic transitions.

4 RESULTS

In the MIREX evaluation, our system obtained a score of
59% in the pre-trained subtask, while the best performing
system by Bello & Pickens achieved 66%. All other systems
were trained on (part of) the test set. Therefore, we expect
the trained models to have learned Beatles-specific chord
progressions which will not necessarily generalize to other
music genres.

Ignoring the major-minor variations of a chord improved
our result by 3%, which is consistent with the other sub-
missions. While our algorithm was the slowest in the test,
it still ran at 26% real-time without optimizations, which
shows that a streaming implementation should be feasible.

Comparing the results of the pre-trained subtask to those
of the train-test subtask leads to interesting conclusions. While
we see an expected performance loss for systems that are
submitted to both categories (Khadkevich & Omologo and,
to a lesser extent, Lee), the best two performing systems are
as good or better than the one of Bello & Pickens. Look-
ing at the description of the winning system by Uchiyama,
Miyamoto & Sagayama, it is safe to attribute at least a part
of the lead to their preprocessing step which filters the au-
dio input of its percussive components. This shows the im-
portance of the feature calculation step in chord extraction
systems.

5 FUTURE WORK

One planned improvement is to extend the back-end such
that it can also generate no-chord labels. Another option



is to investigate the benefits of working with trained proba-
bilistic models that are tuned to a specific collection of mu-
sic, e.g. the Beatles albums. Finally, it is our intention to
replace the ad-hoc grouping of frames by a more intelligent
segmentation, or to move to a purely frame-based system
once we have exploited some opportunities for speeding up
the back-end.
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