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ABSTRACT

We present our submission to MIREX 2008 audio tag classi-
fication contest that is based on our previous work [3, 4]. We
boost decision stumps on aggregate audio features to create
one classifier per tag, and use these classifiers to tag new
songs.

1 INTRODUCTION

Automatic tagging of music triggered a lot of attention lately,
and we are glad that MIREX added a contest for that task.
For an overview of the tagging concept for music, see [5].
We present our submission which is based on our previous
work on boosting [3, 4].

2 ALGORITHM

We use a simple AdaBoost algorithm, as in [3, 4]. In [2]
we present FilterBoost, an extension of this algorithm that
is more efficient on large datasets. However, due to the size
of the training data in the MIREX contest, plain AdaBoost
was a safer choice (see section 3).

2.1 Audio Features

We compute aggregate features [1] over 3s segments. Fea-
tures consist of a constant-Q spectrogram, an autocorrela-
tion vector, MFCC and its first and second derivatives (delta-
MFFC and delta-delta-MFCC). The size of an example is
466.

2.2 AdaBoost

AdaBoost is a meta-algorithm that combines weak classi-
fiers into a strong classifier. It has been succesfully applied
to the task of genre recognition [1] with single stumps as
weak classifier (a threshold on one feature). Here we use the
binary version. The output of the classifier on an example x
is a value y, and we can use the sign of y for classification.
In our case we keep y around.

2.3 Output

We output a continous value for each (song, tag) pair that
represents affinity between that song and that tag (see 2.2).
We also output a binary decision for every (song, tag) pair.
We find a threshold for each tag on values output on a vali-
dation set (approximately 15% of the training examples) by
minimising F1− score 1 .

3 DISCUSSION

We have concerns about the size of the dataset, but for space
reason, we refer the curious reader to [2]. We also want to
thank E. Law for her offer to use her game 2 in order to test
the autotagging models with human subjects. We believe
this kind of evaluation measure the performance more ade-
quately. See her paper [6] for more details.
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