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ABSTRACT

This paper describes our approach to chord extraction from
audio, a variant of which was submitted to the 2009 MIREX
Chord Detection Task (No Training), and achieved the top
ranking of 71.2%. The structural segmentation algorithm
is a pre-processing step for the chord extraction, and was
also submitted separately for the Structural Segmentation
Task. It also achieved the top ranking in that category with
a pairwise F-measure of 0.6.
Chord extraction from audio is a well-established music
computing task, and many valid approaches have been pre-
sented in recent years that use different chord templates,
smoothing techniques and musical context models. The
present work exploits the repetitive structure of songs to
enhance chord extraction, by combining chroma informa-
tion from multiple occurrences of the same segment type.
Our results published in [1] show that the method produces
consistent and more readily readable chord labels and pro-
vides a statistically significant boost in label accuracy.

1. INTRODUCTION

The automatic extraction of chords from audio has appli-
cations in music retrieval, cognitive musicology, and auto-
matic generation of lead sheets. In this work we present
a technique that allows us to generate more authentic lead
sheets than previously possible with automatic methods,
by making use of musical structure. Much of musical struc-
ture is defined by repetition, a core principle in music [2,
p. 229].

In popular songs a repeated verse-chorus format is com-
mon, in which the chord sequence is the same in all sec-
tions of the same type. In lead sheets, for better readabil-
ity these sections would normally only be notated once,
with repeats indicated. Our method mirrors this improve-
ment by assigning the same chord progression to repeated
sections. In addition, having found repeating sections, we
have available several instances of a given chord sequence
from which to estimate the chords, which can lead to an
improvement in estimation accuracy.
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In Section 2 we describe related work. In Section 3 we
describe the chord extraction method used and present a
new segmentation technique that is tailored to our task of
finding repeated chord sequences. In Section 4 we discuss
some more general issues. For examples and results, please
refer to our ISMIR paper [1].

2. RELATED WORK

The majority of approaches to automatic chord estimation
rely on framewise chroma features [3] as a representation
of the relative energy in each pitch class for a given time
window, then apply some further processing to estimate
the chords. When template-matching is used to identify
chords, additional smoothing over time, for example by a
median filter [4], is necessary due to musical variation and
noise. Inference in hidden Markov models (HMMs) [5]
simultaneously performs template-matching and smooth-
ing. These methods treat chords as isolated features of the
music, which is a considerable simplification. In reality,
chords are heard in context, together with the melody, key,
rhythm, form, instrumentation, and other attributes. Some
chord estimation methods account for additional musical
attributes during the estimation process such as key [6],
bass [7], key and rhythm [8, 9], or even key, rhythm and
bass together [10], which is a step towards a unified music
analysis model.

In this work we extend the concept of unified music
analysis by using repetition in the structure to enhance
chord estimation. Dannenberg [11] shows that knowledge
of the musical structure can greatly improve beat tracking
performance, but to our knowledge the principle has not
yet been applied to chord estimation.

Previous automatic music structure extraction tech-
niques include those that primarily search for section
boundaries, indicated by a sudden change in the feature
of interest, which could be timbre [12], spectral evolu-
tion [13], or combinations of features [14]. A common
approach is to cluster together frames that are similar, then
label contiguous similar frames as a segment. However,
this relies on a particular feature remaining approximately
constant for the duration of a section. We are interested in
chords, which do change during a section, so an approach
that searches for repeated progressions [15,16] is more ap-
propriate for our purposes. Methods using this paradigm
rely on a self-similarity matrix [17], which is a symmet-
ric, square matrix that contains a measure of the similarity



between every pair of frames. Repeated sections appear
as parallel diagonal lines, and can be extracted with some
post-processing, such as application of a low pass filter to
reduce noise [18] followed by a thresholding operation to
find contiguous frames with high similarity. In Section 3.3
we present a new variation which is similar to algorithms
proposed by Ong [19] and Rhodes and Casey [20] and ex-
tracts repeated segments of equal length.

3. METHOD

In a song, we call a chord sequence that describes a section
such as the verse or chorus a segment type. Any segment
type may occur one or more times in a song and we call
each occurrence a segment instance. To make use of seg-
ment repetition as part of the chord estimation process, we
rely on segment types whose instances are not only har-
monically very similar, but also have the same length in
beats (see Section 3.4). This is not required of a general
purpose segmentation task, and hence generic segmenta-
tions are not directly utilisable. In Section 3.2 we de-
scribe how we preprocess manual segmentations to meet
our needs. For automatic segmentation we choose to im-
plement our own algorithm, which fulfills the above re-
quirements by design (Section 3.3). First, we describe the
method for calculating our basic features, beat-synchronous
chromagrams (Section 3.1).

3.1 Beat-Synchronous Chromagrams

The automatic segmentation and chord estimation algo-
rithms both rely on chroma features that are synchronised
to the musical beat. The features represent the importance
of each pitch class at the current beat. The initial, short
chroma frames are generated from a note salience repre-
sentation similar to a constant-Q transform, at a hopsize
of 512 samples (46 ms) from audio that has been down-
sampled to 11025 Hz. For the chord extraction algorithm
we split the salience representation to obtain separate bass
and treble chromagrams, but the chromagram used by the
segmentation algorithm covers both the bass and the treble
range. For details see [21].

In order to produce beat-synchronous chromagrams we
obtain a single chroma vector for each beat by taking the
median (in the time direction) over all the chroma frames
falling between two consecutive beat times. We use one
of two sorts of beat times: manual or automatic. The col-
lection of manual beat annotations [22] covers 125 songs
performed by the rock group The Beatles. The automatic
beat times were extracted using Davies’s automatic beat-
tracker [23] on the same set of songs.

3.2 Manual Structural Segmentation

The manual structural segmentations [22] cover the same
125 songs by The Beatles as we have beat annotations for:
29 songs were annotated for a previous project 1 , and 96

1 Segmentations available at http://www.elec.qmul.ac.uk/
digitalmusic/downloads/index.html#segment.

were newly annotated for the present work. The basis for
all annotations are Pollack’s song analyses [24].

Every song contains several segment types, some of
which have multiple instances. In some songs, the in-
stances of a segment type differ in length. In that case,
to fulfill the requirement of equal length instances, the seg-
ment type is divided to create one or more new segment
types whose instances all have the same length. This may
result in new segment types having only one instance in the
song.

3.3 Automatic Segmentation Algorithm

The automatic segmentation method has two main steps:
finding approximately repeated chroma sequences in a song,
and a greedy algorithm to decide which of the sequences
are indeed segments. We calculate the Pearson correlation
coefficients between every pair of chroma vectors, which
together represent a beat-wise self-similarity matrix R =
(rij) of the whole song. This is similar to the matrix of
cosine distances used by Ong [19]. In the similarity ma-
trix, parallel diagonal lines indicate repeated sections of a
song. In order to eliminate short term noise or deviations
we run a median filter of length 5 (typically just more than
one bar) diagonally over the similarity matrix. This step
ensures that locally some deviation is tolerated.

We perform a search of repetitions over all diagonals
in the matrix over a range of lengths. We assume a mini-
mum length of m1 = 12 beats and a maximum length of
mM = 128 beats for a segment, leading to a very large
search space. We minimise the number of elements we
have to compare by considering as section beginnings only
those beats that have a correlation r greater than a thresh-
old tr, and assuming that section durations are quantised to
multiples of four beats. We found that a value of tr = 0.65
worked well. In future work we would like to learn tr from
data. We further reduce the search space by allowing seg-
ments to start only at likely bar beginnings. Likely bar
beginnings are beats where the convolution of a function
representing the likelihood of a change in harmony, and a
kernel with spikes every two beats has a local maximum
(details in [21]).

To assess the similarity of a segment of length l starting
at beat i to another one of the same length starting at j we
consider the diagonal elements

Di,j,l = (ri,j , ri+1,j+1, . . . , ri+l,j+l) (1)

of the matrix R. If the segments starting at i and j are
exactly the same, then Dij will be a vector of ones, and
hence we can characterise a perfect match by

min{Di,j,l} = 1. (2)

To accomodate variation arising in a practical situation,
we relax the requirement (2) by using the empirical p-
quantile function 2 instead of the minimum (which is the 0-
quantile), and choosing a segment threshold ts lower than

2 http://www.mathworks.com/access/helpdesk/
help/toolbox/stats/quantile.html



unity. The triple (i, j, l) hence describes a repetition, if

quantilep{Di,j,l} > ts. (3)

The two parameters p = 0.1 and ts = 0.6 are chosen
empirically. In future work we would like to learn these
values from the ground truth data. The set of repetitions
Ril = {j : quantilep{Di,j,l} > ts} is then added to a list
L of repetition sets, if it has more than one element j, i.e.
if it actually describes at least one repetition. If two seg-
ments (i, j1, l) and (i, j2, l) overlap, only the index of the
one with the higher score is retained inRil.

Each of the setsRil represent a potential segment type,
and its elements represent the start beats of instances of
that segment type. However, there are typically many more
repetition sets than there are segment types. To find repeti-
tion sets relating to actual segment types we use the heuris-
tic of a music editor who tries to save paper: he will first
take the repetition set in which l × |Ril| is maximal, and
then repeat this kind of choice on the remaining segments
of the song, resulting in a greedy algorithm. The only
exception to that rule is the case in which he finds that a
sub-segment of a repetition is repeated more often than the
whole segment. He then chooses the Ril pertaining to the
sub-segment.

3.4 Using Repetition Cues in Chord Extraction

We use structural segmentation to combine several instances
of a segment type in a song and then infer a single chord
sequence from the combination.

The baseline is an existing chord labelling method [10],
which extracts chords from beat-synchronous treble and
bass chromagrams. Using a dynamic Bayesian network
[25] similar to a hierarchical hidden Markov model the net-
work jointly models metric position, chords and bass pitch
class and infers the most probable sequence from the beat-
synchronous chromagrams of the whole song. The method
models four different chord classes: major, minor, dimin-
ished and dominant 3 .

In order to integrate the knowledge of repeating seg-
ments, we split the chromagram for the whole song into
smaller chromagram chunks, each belonging to one seg-
ment instance. If a segment type has more than one in-
stance, all its chromagram chunks are averaged by tak-
ing the mean of the respective elements, thus creating a
new chromagram chunk representing all instances of the
segment type. The chord extraction is then performed on
the newly generated chromagram chunk, and the estimated
chords are transcribed as if they had been extracted at the
individual segment instances.

4. DISCUSSION

The method presented here is not tied to the individual al-
gorithms. Using other chord extraction or segmentation
methods could further improve results and shed more light
on the performance of its constituent parts. As mentioned

3 strictly speaking: major with a minor seventh

in Section 3.3 we plan to investigate the effects of training
some of the segmentation parameters. It would also be in-
teresting to determine whether using the median (instead
of the mean) to average chromagram chunks would lead to
improvements.

The present work focussed on early rock music. We
expect that—given a good segmentation—improvements
in recognition results could be even greater for jazz: while
the extraction of chords in jazz is more difficult than in
rock music due to improvisation and more complex chord
types, the repetition of segment types is often more rigid.

The method to share information globally between seg-
ments we used for this work is a simple one. Integrating
this process with the chord extraction itself would be a
more elegant solution.
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