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ABSTRACT

This extended abstract concerns one of the two systems
submitted by IRCAM for participation in the MIREX 2009
classification and tagging tasks. The system is adaptive
and can handle both single-label classification tasks (genre,
mood, artist) and multilabel tasks (tagging). Adaptability
is attained by means of automatic feature and model se-
lection, which are both embedded in the multiple-instance
binary relevance learning of a Support Vector Machine.
We propose a criterion function for SVM parameter selec-
tion that takes into account unbalanced sets and the effects
of overfitting. The same algorithm, without any manual
parameter adaptation, was submitted to all classification
tasks. However, it was evaluated in two different configu-
rations (also in all classification tasks) related to two differ-
ent temporal modeling methods: in the first mode (“file”)
each track is represented by a single feature vector and in
the second (“tw”) texture windows of fixed length are com-
puted, with a later temporal decision fusion.

1. INTRODUCTION

IRCAM has submitted two different systems for participa-
tion in all MIREX 2009 classification and tagging tasks.
The first system, which we will call ircamclassification08
(denoted by GP in the MIREX results), is the same than
last year’s, and has been addressed in a separate abstract
[1]. The system addressed here will be called ircamclassi-
fication09, and was denoted by BP in the results. This ab-
stract contains a very brief description of the system. For a
detailed presentation and discussion of the system, and for
further experimental results, please see reference [2].

2. SYSTEM DESIGN

Ircamclassification09 is based on Support Vector Machines
(SVM). Our proposal to attain adaptability involves em-
bedding both feature and model selection in the multiple-
instance binary learning needed for multiclass SVMs. Fea-
ture selection is based on the Inertia Ratio Maximization
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using Feature Space Projection (IRMFSP) algorithm [3].
Model selection involves searching for optimal SVM cost
and kernel parameters by performing sub-cross-validation
of the training database at each binary iteration, for which
we propose to use a criterion function that takes into ac-
count overfitting and unbalanced sets.

An important characteristic of the proposed system is
the binarization not only of the model training (which is
needed for SVM anyway), but also of feature and model
selection. Because this dramatically increases the overall
model complexity (there are different features and model
parameters for each binary instance), binarization of all
learning stages is prone to overfitting. Thus, full binariza-
tion of feature and model selection should be accompanied
by measures to mitigate overfitting in order for the system
to gain in classification performance.

2.1 Feature extraction

A high adaptability calls for the extraction of a large num-
ber of audio features, that are to be subsequently selected
automatically. All features are extracted on a short-term
basis (Blackmann window of 60ms length and 20ms hop
size), and include the following:

• Basic spectral features. Including spectral centroid,
rolloff, flux, slope, skewness, kurtosis, etc.

• Basic temporal features. Autocorrelation and zero-
crossings rate.

• Perceptual features. Loudness, specific loudness
and a collection of spectral shape features (centroid,
rolloff, flux, etc.) applied on a mel-warped spectro-
gram.

• Harmonic features. They measure the level of pres-
ence of sinusoidal components, as well as their over-
all spectral shape. They include noisiness, inhar-
monicity and harmonic spectral deviation.

• MFCC. 13 Mel Cepstral Coefficients are extracted,
together with their first (∆) and second (∆∆) deriva-
tives.

• Spectral Flatness Measure and Spectral Crest Mea-
sure. They measure the flatness of the spectral en-
velope, and thus its noisiness.



• Chroma coefficients. Indicate the harmonic content
by measuring the spectral energy in 12 frequency
bands corresponding to the notes of the chromatic
equal tempered scale.

An extracted short-time feature vector has a dimension-
ality of 280. To capture its dynamic behaviour, and to
heavily reduce computational and storage requirements, a
subsequent stage of temporal modeling is applied. In par-
ticular, the loudness-weighted mean and standard devia-
tion of the features across a certain texture window (whose
length is in the range of seconds) are extracted. This makes
a total final dimensionality of 480.

Concerning temporal modeling, two different modes
were evaluated:

1. In file mode (denoted by BP1 in the results), the tex-
ture window spans the whole track, independently
of its length. The file mode is much more compu-
tationally efficient, but it might fail to capture some
degree of dynamic feature behaviour.

2. In tw mode (denoted by BP2 in the results), texture
windows of 4s length and 2s hop size are extracted.
After classification, a decision fusion takes place. In
single-label tasks, majority voting is used. In multi-
label tasks, the track-wise label affinities are aver-
aged, followed by a filtering according to a relevance
threshold.

After extraction and temporal modeling, the axes of the
feature space are centered and normalized by Inter-Quartile
Range (IQR). The normalization parameters are extracted
from the training set and used afterwards on the test set.

2.2 Binary feature and model selection

Our approach includes both feature and model selection to
each one of the SVM binary repartitions. To that end, we
use the 1-vs.-all approach. Feature selection is based on
the IRMFSP algorithm [3], which maximizes the Fisher
discriminant (overall class separability) with an additional
orthogonality constraint. A fixed number of 40 selected
features was used.

The subsequent model selection stage involves search-
ing for the optimal SVM parameters. Here, C-SVMs (Slack
variable-SVMs) are used, since they attain a higher ro-
bustness against overfitting by allowing classification er-
rors near the separation margin while learning. The cost of
these errors is controlled by the factor c, which is one of
the two parameters that need to be optimized. The other
is the factor γ that controls the lobe width of the function
used here as the kernel: Gaussian Radial Basis Function
(G-RBF).

The most usual way of performing this parameter opti-
mization is to perform a cross-validated exhaustive search
in the (c, γ) grid, with classification accuracy as criterion
function. In each fold of the validation, a parameter pair
is selected and an SVM is trained and tested. The param-
eter pair corresponding to the highest obtained accuracy is

selected. The cross-validation partitions are performed on
the training set. To avoid confusion, we will call it sub-
cross-validation (sCV).

Instead of using accuracy for parameter optimization,
we propose the use of the following objective function:

F = FMSR(cni, γnj)
(

1− S(cni, γnj)
Vn

)
, (1)

where FMSR is the F-Measure of the positive class in the
current (n-th) binary sub-problem, S is number of support
vectors found by the algorithm, V is the total number of
training feature vectors, and n = 1, . . . , N is the binary
sub-problem index. Such a function compensates unbal-
anced sets (by using the F-Measure instead of the accu-
racy) and takes into account overfitting (the number of sup-
port vectors found by the algorithm is a good indication of
the complexity of the boundary).

2.3 C-SVM and probability estimates

After finding the optimal features and (c∗n, γ
∗
n) parameters,

the n-th C-SVM with G-RBF as kernel is re-trained using
the whole training set. In the classification phase, probabil-
ity outputs are based on the pairwise coupling method [4].

3. IMPLEMENTATION DETAILS

The feature extraction module is based on the executable
ircamdescriptor, which outputs the computed fea-
tures in the binary SDIF format [5]. Its estimated runtime
for every 30s of 22kHz, 16 bit mono WAV audio is of 3.3s
in file mode and of 2s in tw mode, measured on an Intel
Xeon 64 bit CPU at 2GHz and 8GB RAM. The required
disk space per audio file is around 40kB in file mode (in-
dependently of the file size) and of 175kB for every 30s of
22kHz 16 bit WAV audio in tw mode.

SVM training and classification is performed by the
libsvm library [6]. In file mode, total training runtimes
per cross-validation fold depend heavily on the size of the
database and number of classes. It can range from a few
minutes for small databases with a small number of classes
(5 to 10 classes) to around one hour for databases with a
large number of classes (around 100). In texture window
mode, the training algorithm is much more computation-
ally demanding. Also, the size of the database has less
effect on the total runtime. Even for a small database, a
single cross-validation fold can take several hours (how-
ever, one fold should not take more than two hours).

4. MIREX 2009 RESULTS

The system was evaluated in all 4 single-label classifica-
tion tasks and both multilabel (tagging) tasks. It should be
noted that there were no task-specific configurations or pa-
rameter settings prior to submission: the same system with
the same parameters was tested with all 6 databases.



(a) Genre (mixed)
CL2 73.33%
CL1 73.23%

GLR1 71.23%
BP1 70.63%

MTG5 70.44%
XZZ 69.36%

XLZZG 68.93%
VA1 68.84%
BP2 68.51%
LZG 68.29%

TTOS 67.89%
GT2 67.87%
VA2 67.39%
SS 66.60%

HW1 65.99%
HW2 65.31%
GT1 65.10%

MTG1 64.79%
HNOS1 64.47%
HNOS3 64.34%

GP 64.24%
MTG3 64.06%
MTG4 64.00%
RK1 61.41%
ANO 60.50%
GLR2 60.14%
RCJ4 50.99%

HNOS4 45.16%
RCJ3 37.71%
RCJ1 32.50%

HNOS2 20.90%

(b) Genre (latin)
CL1 74.66%
CL2 73.58%
BP1 67.31%
SS 64.69%

BP2 63.52%
MTG6 63.16%
GLR1 62.79%

GP 62.63%
MTG2 62.39%
MTG1 61.68%
MTG5 61.14%
VA1 58.37%
RK1 57.11%

HNOS1 56.32%
HNOS3 56.22%

LZG 55.96%
XLZZG 55.25%

XZZ 55.25%
RCJ4 55.22%
HW1 54.72%
VA2 54.49%

TTOS 53.70%
GT2 52.82%
RCJ2 52.43%
HW2 52.28%
GLR2 49.84%
GT1 49.75%

MTG4 47.79%
RCJ3 46.78%
MTG3 45.80%
RCJ1 38.93%
ANO 38.87%

HNOS4 30.05%

(c) Classical composer
MTG2 62.05%
CL1 60.97%
CL2 60.03%
XZZ 57.18%
HW1 56.35%
BP1 55.66%

GLR1 55.34%
BP2 54.76%

MTG1 54.73%
LZG 54.40%
VA1 53.57%
VA2 53.57%

XLZZG 53.54%
HW2 53.10%

SS 52.56%
GT2 51.48%

MTG6 50.36%
MTG5 49.75%

GP 48.85%
RK1 48.41%

MTG4 48.20%
MTG3 48.12%
GLR2 45.92%
TTOS 44.37%
GT1 43.69%

HNOS1 43.33%
HNOS3 42.24%

ANO 41.77%
HNOS4 29.04%
HNOS2 15.84%

(d) Mood
CL1 65.67%
CL2 65.50%
GP 63.67%

MTG5 62.83%
HW2 61.67%
LZG 61.67%
HW1 61.33%
GLR1 60.83%
FCY1 60.33%
VA2 60.17%
XZZ 60.00%

MTG3 59.83%
BP2 59.67%

MTG6 59.50%
GT1 59.33%

MTG4 59.33%
VA1 59.33%
SS 58.83%

HNOS1 58.67%
HNOS3 58.67%
FCY2 58.33%
BP1 58.17%

MTG1 57.67%
MTG2 57.50%

XLZZG 57.00%
GT2 56.83%

TAOS 56.83%
RK1 53.17%

GLR2 53.00%
HNOS4 51.17%

ANO 50.67%
RK2 41.33%

HNOS2 34.67%

Table 1. Results of the MIREX 2009 single-label classification tasks (mean classification accuracy in %).

4.1 Single-label results

Table 1 shows the results in terms of mean classification
accuracy for all 4 single-label classification tasks. The sys-
tem has shown good performance in the 10-class mixed
genre task (4th best out of 31 algorithms), in the 10-class
latin genre task (3rd best out of 33 algorithms) and in the
11-class classical composer task (6th best out of 30 algo-
rithms). A noteworthy result in these 3 cases is that the
system performed better in file mode (BP1), with a single
feature vector representing each track, rather than using
texture windows with temporal decision fusion.

In the 5-class mood task, the results show a different be-
havior of the system, both in terms of performance (which
is more moderate, ranking 13th out of 33) and in terms
of a better performance of the texture window approach
(BP2). Also, the closeness of the accuracy results for most
of the participating algorithms is especially remarkable in
this case.

4.2 Multilabel results

As shown in Table 2, in terms of average tag-level F-
Measure the system ranked 4th with the MajorMiner
dataset (43 labels) and 5th with the mood dataset (18 la-
bels).
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(a) MajorMiner
LWW2 0.3107

GT2 0.2933
GT1 0.2900
BP2 0.2899

LWW1 0.2890
BP1 0.2767
CC4 0.2626
CC2 0.2414
CC1 0.2093
CC3 0.1705
HBC 0.0443
GP 0.0122

(b) Mood
LWW2 0.2195

GT1 0.2114
GT2 0.2088

LWW1 0.2037
BP1 0.1949
BP2 0.1926
CC4 0.1833
CC2 0.1798
CC1 0.1723
CC3 0.1471
GP 0.0840

HCB 0.0632

Table 2. Results of the MIREX 2009 multilabel classifica-
tion tasks (average tag F-Measure).
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