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ABSTRACT

This extended abstract describes the system we submit for
MIREX 2009 task “Multiple Fundamental Frequency Es-
timation and Tracking”. The task includes three subtasks:
1) Multi-pitch Estimation (MPE) at frame-level, 2) note
events detection and 3) pitch tracking for each source. Our
system consists of two parts: 1) MPE in each time frame
and 2) pitch trajectory formation from these pitch estimates.
We submit two versions of the system. The first one im-
plements the whole system and does all the three subtasks.
The second one only implements the MPE part and does
the first subtask. For the first subtask the two versions out-
put different results, since the first version refines MPE re-
sults with tracking results.

1. INTRODUCTION

Our system addresses the Multi-pitch Estimation and Track-
ing problem in two stages, as shown in Figure . We submit
two versions of the system. The first one implements the
whole system and does all the three subtasks. The second
one only implements the MPE part and does the first sub-
task. For the first subtask the two versions output differ-
ent results, since the first version refines MPE results with
tracking results.

Now we briefly describe each part of the whole system.
For a detailed description, please refer to [1].

2. MULTI-PITCH ESTIMATION

2.1 Multi-pitch Estimation In A Single Frame

We view the Multi-pitch Estimation (MPE) problem (given
polyphony N ) as a Maximum Likelihood parameter esti-
mation problem in the frequency domain. The parameters
to be estimated are the pitches θ = {F 1

0 , · · · , FN
0 }, and

the observation is the spectrum, which is represented as
spectral peaks and non-peak regions. Peaks are detected
using the peak detection algorithm in [2]. The non-peak
region is defined as the set of frequencies falling more than
a quarter-tone from any observed peak. We try to find the
set of F0s with harmonics that maximize the probability of
the occurrence of observed peaks, and minimize the prob-
ability that they have harmonics in non-peak regions.

Thus, the likelihood function can be defined as follows:

L(θ) = Lpeak(θ) · Lnon-peak region(θ) (1)

Figure 1. System overview.

For the detailed formulation of the likelihood function,
and the description about how we learn the model parame-
ters from training data, please refer to [1].

In Eq. (1), the search space of the maximum likelihood
solution θ̂ is combinatorially explosive of the polyphony.
We avoid this problem with a greedy search strategy. We
start from an empty set θ̂

0
. In each iteration, we add a

F0 estimate to θ̂
n

to get a new set θ̂
n+1

that gets maxi-
mum likelihood among all the possible values of the newly
added F0. It is found that L(θ̂

n
) increases with n. This

iteration terminates when n = N , the given polyphony.
If the polyphony is not given, we need to decide when to

terminate. To do so, we propose a simple threshold-based
method. The minimum number of F0s that can achieve the
likelihood excess to a threshold is returned as the polyphony
estimate:

N = min
1≤n≤M

n,

s.t. ∆(n) ≥ T · ∆(M) (2)

where ∆(n) = L(θ̂
n
) − L(θ̂

1
) is the maximum increase

of likelihood that could be achieved when the polyphony



is set to be n. M is the maximum allowed polyphony; T
is a learned threshold. For all experiments in this paper,
the maximum polyphony M is set to 9. T is empirically
determined to be 0.88. This polyphony estimation method
is found to work well on a large data set containing both
music pieces and musical chords with different polyphony.

2.2 Refine Pitch Estimates Using Neighboring Frames

We propose a multi-pitch refinement method using esti-
mates in neighboring frames: For each frame t, we build a
weighted histogram in the frequency domain, where each
bin corresponds to a semitone in the pitch range. Then, a
triangular weighting function centered at t is imposed on a
neighborhood of t, whose radius is r frames. The refined
polyphony estimate N is calculated as the weighted aver-
age of polyphony estimates in all the frames in this neigh-
borhood. Then N bins with the highest histogram values
are selected to reconstruct refined pitch estimates. For each
of these bins, if there is an original pitch estimate in frame t
that falls inside this bin, the original pitch estimate is used
as the refined pitch estimate directly. Otherwise, the re-
fined pitch estimate is calculated as the weighted average
frequency of all the pitch estimates in this neighborhood
that fall inside this bin. In our system, the radius r is set to
9 frames. After this refinement, a number of inconsistent
estimation errors are removed.

3. PITCH TRAJECTORY FORMATION

Given pitch estimates in all frames, we view pitch trajec-
tory formation as a constrained clustering problem, where
each pitch trajectory corresponds to a cluster.

Constrained clustering [3,4] is a class of semi-supervised
learning algorithms. Constraints can be imposed the in-
stance level, where there are two basic forms: must-link
and cannot-link. A must-link (cannot-link) specifies that
two instances should (not) be assigned to the same cluster.

3.1 Multi-pitch Tracking as Clustering

For our pitch trajectory formation problem, we adopt these
two constraints (as described in Section 3.2). We then for-
mulate the clustering problem to minimize the intra-class
distance J , as the K-means algorithm does:

J =
K∑

k=1

∑
xi∈Tk

‖xi − ck‖2 (3)

where K is the number of pitch trajectories; xi is a feature
vector in trajectory Tk and ck is the mean feature vector in
trajectory Tk; ‖ · ‖ denotes the Euclidean distance.

Then we propose an iterative greedy algorithm that min-
imizes Eq. (3) in Section 3.4.

3.2 Initial Pitch Trajectory and Notelet Formation

To get the initial clustering with which our algorithm starts,
we simply sort pitches in each frame from high to low and
assign labels from 1 to K. This is possible, since there are
at most K pitches in each frame.

Then must-links are imposed on similar pitches that are
in adjacent frames and have the same initial trajectory la-
bel. The maximal must-link difference between pitches in
adjacent frames is set to 0.3 semitones (30 cents). Pitches
connected by must-links form a short trajectory, which we
call a notelet, since it is supposed to be some part of a
note. Once notelets are formed, cannot-links are imposed
between all pitches in two notelets that overlap more than
30ms. We say that two such notelets are in a cannot-link
relation. We allow the 30ms overlap within a melodic line
as it may be reverberation or ringing of a string. We chose
conservative values for these parameters to ensure that they
are reasonable for common real-world scenarios.

3.3 Harmonic Structure

Feature vectors in Eq. (3) should have the property that
they are similar in the same trajectory and far in different
trajectories. Harmonic structure has been proven to be a
good choice for harmonic instrumental sources, which is
defined as the vector of relative amplitudes of harmonics
of a pitch [2]. Harmonic structures of the same instrument
are similar, even if their pitches and loudness are different.
On the other hand, different instruments usually have very
different harmonic structures.

We calculate harmonic structure as follows: First, har-
monics of each pitch are found from spectral peaks. For
overlapping harmonics of different pitches, the peak like-
lihood in Eq. (1) is used to distribute energy to each pitch.
Harmonic structures are then normalized to have the same
total energy. The first fifty harmonics are used here.

3.4 Final Pitch Trajectory Formation

From the initial pitch trajectory, we now consider re-assigning
notelets to different trajectories to minimize Eq. (3).

Figure 2. Illustration of a swap-set (the rounded rectan-
gle) for a notelet (the bold solid line). Solid and dashed
lines represent notelets in trajectory Tk and Tl, respec-
tively. Cannot-link relations are indicated by arrows.

Suppose we want to change the trajectory label of a
notelet n from Tk to Tl. We cannot do this in isolation,
since there may be a notelet in Tl that overlaps n and we
assume monophonic pitch trajectories. We could simply
swap the trajectories for two overlapping notelets. This,
however may cause a chain reaction, since the swap may
cause new overlaps within a trajectory. Instead, we select
two trajectories and pick a notelet n from one of the trajec-
tories. We then find all notelets in these two trajectories,



For each notelet n, with trajectory Tk

J0 = cost of current trajectory assignments (Eq. (3))
Jbest = J0

For each trajectory Tl, such that Tl 6= Tk

Find the swap-set between Tl and Tk containing n

J = (Eq. (3)) if we swap every notelet in the swap-set
If J < Jbest, Jbest = J , End

End
If Jbest < J0, Perform swap that produces Jbest, End

End

Table 1. The pitch trajectory formation algorithm.

Tk and Tl that connect to n via a path of cannot-link rela-
tions (defined in Section 3.2). We call this the swap-set,
as illustrated in Figure 2. These are the notelets affected
by a potential trajectory swap between two notelets. All
notelets in a swap set are swapped together, rather than in-
dividually, and the new trajectory are evaluated with the
cost function in Eq. (3).

Table 1 describes the process we use to swap trajectories
for notelets until the trajectories of all notelets reach fixed
points. In our experiment, this usually takes 3 to 4 rounds
(where a round is a traversal of all notelets).

3.5 Note Formation

After pitch trajectories are formed, we form notes in each
trajectory from the notelets. Two notelets are considered
to be in the same note if the time gap between them is less
than 100ms and their frequency difference is less than 0.3
semitone. Then the pitches in the gap are reconstructed
using the average frequency of the note. Notes of length
less than 100ms are considered spurious and removed. The
0.3 semitone parameter is the same as the one in imposing
must-links. The 100ms parameter is set without tuning to
adapt to the tempo and note lengths of the test music.

4. RESULTS

5. CONCLUSION

In this paper, we briefly described the system we submit to
MIREX 2009 “Multiple Fundamental Frequency Estima-
tion and Tracking“ task. Our system first estimated pithes
and polyphony in each time frame. Then pitch trajecto-
ries were formed by constrained clustering pitch estimates
across frames.
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