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ABSTRACT

In our efforts for the actual MIREX, we introduce two new
feature sets, discuss example feature sets which show the
advantages of postprocessing and combining existing audio
descriptors and explain a weighted one-against-one multi-
class SVM. The new audio descriptor is based on simple
spectral amplitude and power binning and shows promis-
ing results when postprocessed accordingly thereby expand-
ing its dimensionality. Our second feature set is of sym-
bolic nature and captures onsets and loudness of repetitive
tones thereby covering another area of the musical piece
than other audio descriptors do. These feature sets – some
existing sets and some postprocessed extensions of them –
are then feed to a multiclass SVM ensemble which votes us-
ing the one-against-one principle where each binary SVM
classifier is additionally weighted by the output of a correc-
tion SVM which estimates whether the input falls into one
of the classes serviced by the classifier.

1 INTRODUCTION

Classification of music by genre, artist or mood are impor-
tant tasks for retrieval and organization of music databases.
In previous works audio features were used in classifiers di-
rectly and without any postprocessing leading to suboptimal
exploitation of the extracted information. Due to the miss-
ing postprocessing step simple feature-sets may have been
overlooked which would develop their potential only if post-
processed accordingly. Our aim is therefore to use existing
audio descriptors, postprocess them and combine the results
with a new kind of symbolic audio descriptor which extracts
onsets of repetitive tones in music. We will also describe a
simple feature-set based on spectral binning which is be-
lieved to give very good classification results by just using
adequate postprocessing.

The overall scheme of our proposed genre classification
system is shown in Figure 1. It processes an audio file in two
ways to predict its label (genre, mood, artist, etc.). While
in the first branch, the audio feature extraction methods de-

scribed in Section 2.1 are applied directly to the audio sig-
nal and then postprocessed resulting in the sets discussed in
Section 2.2, the second branch uses a template extractor de-
scribed in Section 2.3 to find onsets of repetitive tones and
subsequently generate new audio features from the result-
ing data. The feature-sets extracted from the music serve
as input to a multi-class SVM ensemble consisting of bi-
nary SVMs combined with a weighted one-against-one vot-
ing method which is explained in more detail in Section 3.2.

2 SYSTEM DESCRIPTION

2.1 Audio Feature Extraction

All the following descriptors are extracted from a spectral
representation of 6 sec. segments in the audio signal. While
in full length songs, the number of segments varies and can
be controlled using a ’step width’ parameter, in a 30-second
audio clip, usually 5 segments are extracted. Rhythm Pat-
terns are summarized using the median over the 5 segments,
Statistical Spectrum Descriptors are summarized computing
the mean.
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Figure 1. General framework of the system



2.1.1 Rhythm Pattern (RP)

The feature extraction process for a Rhythm Pattern [4, 2]
is composed of two stages. First, the specific loudness sen-
sation on 24 critical frequency bands is computed, by using
a Short Time FFT, grouping the resulting frequency bands
to the Bark scale, applying spreading functions to account
for masking effects and successive transformation into the
Decibel, Phon and Sone scales. This results in a psycho-
acoustically modified Sonogram representation that reflects
human loudness sensation. In the second step, a discrete
Fourier transform is applied to this Sonogram, resulting in a
(time-invariant) spectrum of loudness amplitude modulation
per modulation frequency for each individual critical band.
After additional weighting and smoothing steps, a Rhythm
Pattern exhibits magnitude of modulation for 60 modula-
tion frequencies (between 0.17 and 10 Hz) on the 24 critical
bands. Note that when using 22khz audio, the number of
critical bands is reduced to 20 and the final Rhythm Pattern
has 1200 dimensions. For details refer to [4, 2].

2.1.2 Statistical Spectrum Descriptor (SSD)

In the first part of the algorithm for computation of a Statis-
tical Spectrum Descriptor (SSD) the specific loudness sen-
sation is computed on 24 Bark-scale bands, equally as for
a Rhythm Pattern. Subsequently, the mean, median, vari-
ance, skewness, kurtosis, min- and max-value are calculated
for each individual critical band. These features computed
for the 24 bands constitute a Statistical Spectrum Descrip-
tor. SSDs describe fluctuations on the critical bands and are
able to capture additional timbral information compared to
a Rhythm Pattern, yet at a much lower dimension of the fea-
ture space, as shown in the evaluation in [2].

2.1.3 Modulation Frequency Variance Descriptor (MVD)

This descriptor measures variations over the critical fre-
quency bands for a specific modulation frequency (derived
from a Rhythm Pattern). Consider a Rhythm Pattern, i.e.
a matrix representing the amplitudes of 60 modulation fre-
quencies on 24 critical bands: The MVD vector is computed
by taking statistics (mean, median, variance, skewness, kur-
tosis, min and max) for one modulation frequency over the
24 (resp. 20) bands. A vector is computed for each of the 60
modulation frequencies. The MVD descriptor for an audio
file is computed from the mean over the multiple MVDs of
its segments.

2.1.4 Average Spectral Energy (ASE)

This feature set is a very simple one, containing just a
coarse binning of the amplitude and the power spectrum at
40, 120, 500, 2000, 6000, 11000 and 22050Hz respectively,
averaged over all SFFT windows.

2.2 Postprocessed Feature-Sets

2.2.1 Small Rhythm Pattern Extension (SRPE)

For enhancing the classification capability of the Rythm Pat-
tern set we designed an additional set constructed by non-
linear postprocessing of the RPs where the first the loudness
amplitudes and their squares at the 60 modulation frequen-
cies are summed up to result into ”modulation energies” pro
critical band. Then two matrices are built, the first one by
dividing each amplitude pro band with each squared am-
plitude and the second one by dividing the squared ampli-
tudes by the simple ones. The final extension to RP has
2 · (24 + 24 · 24) or 1200 dimensions for 24 critical bands.
We call this set the small extension because using the same
procedure it is also possible to sum the energies of the criti-
cal bands at the modulation frequencies resulting in a much
higher-dimensional set (7320).

2.2.2 Relative Spectral Energy Matrix (RSEM)

As an extension to the Average Spectral Energy set and in
analogy to the Small Rhythm Pattern Extension, we calcu-
late two matrices by dividing each of the amplitude bins by
each of the power bins and vice versa, resulting in a 98 di-
mensional extension.

2.2.3 ASE-weighted Statistical Spectrum Descriptor
(ASE×SSD)

This is actually a combination of the Average Spectral En-
ergy set with the Statistical Spectrum Descriptor. For each
of the 24 critical bands 4 matrices are calculated, with the
first one being built by dividing each amplitude bin by each
statistic, the second one by dividing each power bin by each
statistic and the other two being the built using the recipro-
cals of the elements of the first two matrices.

2.3 Symbolic Feature Extraction

2.3.1 Template Descriptors

An algorithm coming from the blind source separation do-
main was adapted for genre classification and related tasks.
The goal of the template extractor [1] in blind source sep-
aration is to separate sounds or tones from instruments by
making use of the repetitive structure of music. In the orig-
inal setting, each instrument sound is represented by a tem-
plate which is adapted during an iterative training process
to better represent its sound, suppressing the other instru-
ments. The sum of these templates at their respective onsets
will then reconstruct the song, though this is not a perfect
reconstruction.

In genre classification, the sheer amount of informa-
tion makes such an approach infeasible due to the high



Figure 2. Workflow of the SVM ensemble

demand on computational resources, thus several simplifi-
cations were done leading to a different interpretation of
the templates. In order to save time, the templates are not
adapted and are initialized only by cutting a part of a track
which is chosen randomly. Thus the songs are reconstructed
only by small pieces of (possibly) other songs. Furthermore
the length of the templates is restricted to 1024 samples or
about 1/20 of a second which due to their short duration
represent the timbre or texture of the sound at a specified
time rather than a tone or a mixture of tones.

These templates themselves are then further processed to
result in the template feature set. The descriptors this set
is composed of are for example the mean onset amplitude,
mean onset distance, mean overlap with the other templates
(matrix), template count, etc.

3 CLASSIFICATION

3.1 Classification Setup

For classification purposes we use a weighted one-against-
one multi-class support vector machine (SVM) ensemble
which is fed with all feature-sets concatenated into one high-
dimensional vector. The output class is decided by adding
the weighted decisions of each class i to class j binary SVM
and taking the class with the highest accumulated value.

3.2 Weighted one-against-one SVM

We use an one-against-one SVM ensemble for classifica-
tion, which incorporates correcting SVMs [3] as a second
layer to the classifier SVMs. The correcting SVMs weight
the vote of each classifier SVM cij which differentiates be-
tween classes i and j. Figure 2 shows the workflow of the
weighted SVM ensemble, depicting the classifiers cij , cor-
recting SVMs gij and the summed vote wi for class i. The
rationale is that the classifier SVMs can only competently
respond to a new sample if its class label falls into one of
the two classes that it was trained for. If the sample has
some other class label, then the SVM is assumed to respond
randomly and uncorrelated with other SVMs. In that way
the votes for the incorrect classes will be distributed more
uniformly while only the correct class will draw off votes
from the other classes thereby reaching the highest score.

As this may not be the case we use correcting SVMs which
only have to estimate the probability that the sample falls
into one of the two classes serviced by their corresponding
classifier SVMs.

We noticed a general improvement in the prediction ac-
curacy of the ensemble which is most noticeable when hav-
ing a high number of classes with only few samples per
class. As the correcting SVMs are not expected to estimate
the error rate of the binary SVM but just its competency
in classifying a given sample, they can be trained indepen-
dently from the classifier SVMs.
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