
MARSYAS SUBMISSIONS TO MIREX 2009

George Tzanetakis
University of Victoria

Computer Science
gtzan@cs.uvic.ca

ABSTRACT

Marsyas is an open source software framework for au-
dio analysis, synthesis and retrieval with specific empha-
sis on Music Information Retrieval. It is developed by an
international team of programmers and researchers led by
George Tzanetakis. In MIREX 2009 the Marsyas team
participated in the following tasks: Audio Classical Com-
poser Identification, Audio Genre Classification (Latin and
Mixed), Audio Music Mood Classification, Audio Beat
Tracking, Audio Onset Detection, Audio Music Similarity
and Retrieval and Audio Tagging Tasks. In this abstract
we describe the specific algorithmic details of our sub-
mission and provide information about how researchers
can use our system using the MIREX input/output con-
ventions on their own datasets. Also some comments on
the results are provided especially highlighting the excel-
lent running time performance of our system (an order of
magnitude faster than any other submission while remain-
ing competitive in task performance).

1 INTRODUCTION

Marsyas is an open source software framework for audio
processing with specific emphasis on Music Information
Retrieval (MIR). It has been around since 1999 and in
2002-2003 underwent a major restructure/rewrite (version
0.2) [9]. This version has now matured and has been pro-
gressing nicely in 2006-2009 with the addition of several
new developers and finally some decent documentation.
We have participated in several tasks mostly related to
classification and similarity since the Music Information
Retrieval Evaluation Exchange (MIREX) in 2007. This
year we also submitted algorithms for automatic onset de-
tection, beat tracking and automatic music tag annotation.

There are two main advantages of Marsyas compared
to other solutions for building MIR systems:

• Integration:

Marsyas strives to support all the necessary algo-
rithmic and software building blocks required to build
full MIR systems. Frequently MIR researchers use
a variety of different software systems to achieve
their goal. For example MATLAB might be used

c© 2007 Austrian Computer Society (OCG).

for feature extraction and WEKA might be used for
machine learning/classification. There are two main
problems with such non-integrated approaches. The
first is reduced performance due to communication
bottlenecks between each part of the process. The
second which is more deep but not really utilized in
our submission this year is the ability of integrated
systems to combine signal processing and machine
learning on several different abstraction layers and
with both bottom-up and top-down processing. In
constrast typically the use of non-integrated approaches
follows the classic bottom-up sequential approach
of feature extraction followed by classification.

• Runtime performance:

As most practitioners of MIR for audio signals know,
it takes a lot of computation time. One of the major
goals of Marsyas is to reduce this computation time
as much as possible. Unlike many other computer
applications, computation time differences in audio
MIR can play an important role in the ability to con-
duct experiments especially over large audio collec-
tions. An experiment that completes in 30 minutes
is much easier to handle compared to one that com-
pletes in 8 hours. Fast computations means that the
experiment can be repeated several times to tune
different parameters. Being able to process a mil-
lion sound clips can result in better statistics for fea-
ture extraction than processing 100 sound clips and
so on. Marsyas achieves fast run-time performance
using a variety of different means which include: 1)
a dataflow architecture that minimizes the need for
memory allocation and can process audio files using
large networks of computation blocks with a fixed
memory footprint 2) fast, optimized C++ code for
all operations 3) the ability to process large collec-
tions of audio files in one run with fixed memory
footprint. Frequently other approaches to MIR op-
erate on one file at a time adding significant compu-
tation time to start/stop a process, allocate memory
etc every time a file is processed.

The main goal of our MIREX submission was to high-
light these characteristics of Marsyas and hopefully moti-
vate more researchers to explore the framework and con-
tribute to it. Anyone can download the software frame-
work, look at the corresponding code and run experiments

on their own datasets. In fact the source distribution of
Marsyas includes a subdirectory named MIREX with spe-
cific detailed instructions of how to compile and run the
MIREX tasks so that researchers can easily perform their
own experiments on datasets as long as they follow they
MIREX conventions.

For the classification, tag and retrieval tasks the se-
lected set of features and classification approach we choose
to utilize was straight-forward, well-known and most im-
portant fast to compute. Moreover, we have significant
experience using these features over a large number of
various audio datasets so we felt more confident about
their robustness dealing with unknown audio collections.
More complicated feature extractors for example based
on rhythmic, pitch, and stereo information are supported
at various levels of completeness in Marsyas but unfortu-
nately will have to wait for next MIREX.

This year we introduced new submissions to the fol-
lowing tasks: audio tag annotation, audio onset detection
and audio beat tracking.

2 TEAM

George Tzanetakis is the author of the abstract but several
Marsyas developers participated in the development of the
algorithms. Steven Ness (University of Victoria, Canada),
Anthony Theocharis (University of Victoria, Canada) and
Luis Gustavo Martins (Catolica University, Portugal) worked
on various aspects of the automatic tag annotation submis-
sion. Fabien Gouyon (INESC Porto, Portugal), Joao Lo-
bato Oliveira (INESC Porto, Portgual) and Luis Gustavo
Martins (Catolica University, Portugal) worked on auto-
matic beat detection while Luis Gustavo Martins worked
on the audio onset detection. In addition other submis-
sions by different teams also utilized Marsyas as part of
their systems. These include the classification submis-
sions of Hasegawa, Nishimoto, Ono, Sagayama (HNOS1-
4), Rao and Kini (RK1) and Tsunoo, Tzanetakis, Ono,
Sagayma (TTOS). These submissions were not coordi-
nated by the Marsyas team and therefore are not described
in the abstract.

3 SYSTEM DESCRIPTION

For all the tasks we participated we decided to represent
each audio clip as a single feature vector. Even though
much more elaborate audio clip representations have been
proposed in the literature we like the simplicity of ma-
chine learning and similarity calculation using single fea-
ture vectors per audio clip. Coupled with a decent clas-
sifier this approach worked reasonably well compared to
other much more complex ones.

The features used are Spectral Centroid, Rolloff, Flux
and Mel-Frequency Cepstral Coefficients (MFCC). To cap-
ture the feature we compute a running mean and standard
deviation over the past M frames:

Figure 1. Feature extraction and texture window

mΦ(t) = mean[Φ(t−M + 1), ..,Φ(t)] (1)
sΦ(t) = std[Φ(t−M + 1), ..,Φ(t)] (2)

where Φ(t) is the original feature vector. Notice that
the dynamics features are computed at the same rate as the
original feature vector but depend on the past M frames
(40 in our case corresponding to approximately a so called
“texture window” of 1 second). This results in a feature
vector of 32 dimensions at the same rate as the original 16-
dimensional one. This process is illustrated in Figure 1.
The sequence of feature vectors is collapsed into a single
feature vector representing the entire audio clip by tak-
ing again the mean and standard deviation across the 30
seconds (the sequence of dynamics features) resulting in
the final 64-dimensional feature vector per audio clip. A
more detailed description of the features can be found in
Tzanetakis and Cook [7].

We also submitted an algorithm that utilizes stereo pan-
ning information to improve classification tasks for which
the recording/mixing process is different for the individ-
ual classes. The features are based on calculating a Stereo
Panning Spectrum that has a panning value between -1
(full left) and +1 (full right) for every FFT bin.

We describe a set of features that summarize the infor-
mation contained in the Stereo Panning Spectrum that can
be used for automatic music classification. The main idea
is to capture the amount of panning in different frequency
bands as well as how it changes over time.

We define the Panning Root Mean Square for a partic-
ular frequency band as:

Pl,h =

√√√√ 1
h− l

h∑
k=l

[SPS(k)]2 (3)

where l is the lower frequency of the band, h is the high
frequency of the band, and N is the number of frequency
bins. By using RMS we only consider the amount of pan-
ning without taking into account whether it is to the left
or right. We consider the following 4-dimensional feature
vector corresponding to an analysis window t:

Φ(t) = [Ptotal(t), Plow(t), Pmedium(t), Phigh(t)] (4)

The PRMS values correspond to overall panning (0–22050
Hz), and panning for low (0–250 Hz), medium (250–2500
Hz) and high frequencies (2500–22050 Hz) respectively.

To capture the dynamics of panning information we
compute a running mean and standard deviation over the
past M frames:

mΦ(t) = mean[Φ(t−M + 1), ..,Φ(t)] (5)
sΦ(t) = std[Φ(t−M + 1), ..,Φ(t)] (6)

This results in a 8-dimensional feature vector at the same
rate as the original 4-dimensional one. For the experi-
ments M is set to 40 corresponding to approximately 0.5
seconds. To avoid any duration effects on classification we
only consider approximately the first 30 seconds of each
track, resulting in a sequence of 1000 8-dimensional fea-
ture vectors for each track. The tracks are stereo, 16-bit,
44100 Hz sampling rate audio files and the STFT win-
dow size is set to 1024 samples. The sequence of feature
vectors is collapsed to a single feature vector represent-
ing the entire track by taking again the mean and standard
deviation across the first 30 seconds resulting in the final
16-dimensional feature vector per track. In addition the
usual audio features described above are calculated sep-
arately for each channel and concatenated. More details
can be found in Tzanetakis et al [8].

For the audio similarity and retrieval task once all the
feature vectors (one per audio clip) have been computed
the features are normalized so that the minimum of each
feature is 0 and the maximum in 1 (Max/Min Normaliza-
tion) and Euclidean distance over the normalized features
is used for the distance matrix.

For all the classification tasks (audio classical com-
poser identification, audio genre classification, audio mu-
sic mood classification) a linear support vector machine
classifier was used.

4 AUDIO TAG CLASSIFICATION

Audio tag annotation can viewed as a problem of multi-
label classification [6]. More details about our approach
can be found in a recent ACM Multimedia paper [4]. Our
approach is to use a distribution classifier (a linear SVM
with probabilistic outputs) that can output a distribution
of affinities (or probabilities) for each tag. This affinity
vector can either be used directly for indexing and re-
trieval, or thresholded to obtain a binary vector with pre-
dicted tag associations for the particular track. The result-
ing affinity vector is fed into a second stage SVM clas-
sifier in order to better capture the relations between tags.

This approach is a specialized case of stacking generaliza-
tion [10], a method for the combination of multiple clas-
sifiers. Similar ideas have appeared in the literature under
other terms such as anchor-based classification, and se-
mantic space retrieval, but not necessarily in a multi-label
tag annotation context. The general idea is to map the
content-based features to a more semantically meaning-
ful space, frequently utilizing external information such
as web resources. Stacked generalization has been used
for discriminative methods for multi-label classification
in text retrieval [3] but using a vector of binary predic-
tions for each label to model dependencies between them.
The most closely relevant work is applied in improving
multi-label analysis of music titles again using a second
stage classifier on the binary predictions of the first stage
classifiers which the authors term the correction approach
[5].

Figure 2. System flow diagram

Figure 4 shows the flow of information for our pro-
posed audio annotation system. For each track in the au-
dio collection a feature vector is calculated based on the
audio content. As each track might be annotated by mul-
tiple tags the feature vector is fed into the multi-class Au-
dio SVM several times with different tags. Once all tracks
have been processed, the linear SVM is trained and a tag
affinity output vector (TAV) is calculated. The TAV can
be used directly for retrieval and storage or converted to
a tag binary vector (TBV) by some thresholding method.
When stacked generalization is used, the tag affinity vec-
tor (TAV) is used as a semantic feature vector for a sec-
ond round of train- ing over the tracks using an affinity
SVM which produces a stacked tag affinity vector (STAV)
and a stacked tag bi- nary vector (STBV). The resulting
predicted affinity and binary vector can be used to eval-
uate the effectiveness of the retrieval system using met-
rics such as Area under Receiver Operating Characteris-
tic Curve (AROC) for the TAV and information retrieval
measures for the TBV.

5 AUDIO ONSET DETECTION

The onset detection algorithms is based on a recent tutorial
article [2], where a number of onset detection algorithms

Figure 3. The top panel depicts the time domain represen-
tation of a fragment of a polyphonic jazz recording, below
which is displayed its corresponding spectrogram. The
bottom panel plots both the onset detection function SF(n)
(gray line), as well as its filtered version (black line). The
automatically identified onsets are represented as vertical
dotted lines.

were reviewed and compared on two datasets. Dixon con-
cluded that the use of a spectral flux detection function
for onset detection resulted in the best performance ver-
sus complexity ratio.

Following these findings our approach is based on the
use of the spectral flux as the onset detection function,
defined as:

SF (n) =
N/2∑
k=0

H(|X(n, k)| − |X(n− 1, k)|) (7)

where H(x) = x+|x|
2 is the half-wave rectifier func-

tion, X(n, k) represents the k-th frequency bin of the n-th
frame of the power magnitude (in dB) of the short time
Fourier Transform, and N is the corresponding Hamming
window size. For the experiments performed in this work
a window size of 46 ms (i.e. N = 2048 at a sampling rate
fs = 44100 Hz) and a hop size of about 11ms (i.e. 512
samples at fs = 44100 Hz) are used. The bottom panel of
Figure 4 plots the values over time of the onset detection
function SF(n) for an jazz excerpt example.

The onsets are subsequently detected from the spectral
fux values by a causal peak picking algorithm, where it
attempts to find local maxima as follows. A peak at time
t = nH

fs is selected as an onset if it satisfies the following
conditions:

SF (n) ≥ SF (k) ∀k : n− w ≤ k ≤ n+ w (8)

SF (n) >
∑k=n+w

k=n−w SF (k)
mw + w + 1

× thres+ δ (9)

where w = 6 is the size of the window used to find a local
maximum, m = 4 is a multiplier so that the mean is cal-
culated over a larger range before the peak, thres = 2.0

Figure 4. Agent-based Causal Beat Tracking: Graphical
evolutionary view of the scores and periods of 6 BeatA-
gents along a 10sec. musical piece

is a threshold relative to the local mean that a peak must
reach in order to be sufficiently prominent to be selected
as an onset, and δ = 10−20 is a residual value to avoid
false detections on silence regions of the signal. All these
parameter values were derived from preliminary experi-
ments using a collection of music signals with varying on-
set characteristics.

As a way to reduce the false detection rate, the onset
detection function SF(n) is smoothed (see bottom panel of
Figure 4),using a Butterworth filter defined as:

H(z) =
0.1173 + 0.2347z−1 + 0.1174z−2

1− 0.8252z−1 + 0.2946z−2
(10)

In order to avoid phase distortion (which would shift
the detected onset time away from the SF(n) peak) the in-
put data is filtered in both the forward and reverse direc-
tions. The result has precisely zero-phase distortion, the
magnitude is the square of the filter’s magnitude response,
and the filter order is double the order of the filter specified
in the equation above.

6 AUDIO BEAT TRACKING

The developed beat tracking system follows a line of two
state-of-the-art algorithms: 1) a multi-agent system where
different agents track beats at distinict metrical levels (pe-
riods) to find the most meaningful tempo hypothesis 2)
an evaluation and guiding system to account for eventual
variations along a musical piece, handling pulse period
changes and short-term timing deviations. The designed
approach uses a set of competitive agents to perform a
causal and real-time rhythm analysis of any real musical
piece. For such, an initial induction step, based on the au-
tocorrelation (ACF) of a spectral flux window correspon-
dent to the beginning of the music, feeds the first set of
agents with their initial period, phase hypotheses pairs.
Then an evaluation function guides the tracking process,
by selecting the hypothesis which better fits the most rel-
evant metrical structure (tactus) imposed by the musical
events (spectral flux function), at each time. Along all
procedure, the agents hypotheses are adjusted as needed,
and new agents are generated in response to the evalua-

Figure 5. Feature extraction data flow network in
Marsyas 0.2

tion of each agents local behaviour. Figure 4 shows the
evolution of 6 beat agents for a 10-second clip.

7 IMPLEMENTATION

In this section we provide information about how to down-
load Marsyas and find information for installing and us-
ing the framework as well as specific information for run-
ning the tasks we participated using the MIREX 2009 in-
put/output conventions. We hope that providing this infor-
mation will help other researchers and practitioners run
our system on their own datasets and motivate them to
participate in the Marsyas developer and user communi-
ties. Marsyas can be compiled under Linux, OS X (Intel
and PPC), and Windows (Visual Studio, Visual Studio Ex-
press, Cygwin and MinGW).

To download Marsyas use the following url:
http://www.sourceforge.net/projects/marsyas
For information and documentation use the following url:
http://marsyas.sourceforge.net

System specific installation instructions are provided
in the documentation. Once compiled it is straightforward
to run the MIREX 2009 tasks we participated. The file
MIREX/README in the Marsyas source tree contains all
the necessary instructions including the exact SVN revi-
sion numbers that were used for the MIREX 2009 sub-
mission.

For classification the Marsyas MIREX submissions uti-
lized a linear support vector machine trained using libsvm
[1] which is directly integrated into the source code. Fig-
ure 5 shows the Marsyas dataflow diagram for the feature
extraction that is common among all tasks.

7.1 Quick Instructions for compiling Marsyas

Quick instructions for compiling Marsyas (more detailed
instructions can be found in the manual which is online
at http://marsyas.sness.net - the instructions assume that
subversion and cmake are available in the system the revi-
sion number is provided separately for each task). The last
command enters the subdirectory where all the Marsyas
executables reside.

> svn -r REVNUM co SVNPATH marsyas
> cd marsyas
> mkdir build
> cd build

Rank Marsyas Best
Composer 15/29 51.48 62.05
Latin 22/32 52.82 74.66
Mixed 12/31 67.87 73.30
Mood 14/28 59.33 65.67

Table 1. Rank and classification accuracy for Marsyas
submissions

> ccmake ../src
> make
> cd build/bin

where each task has a different revision number (REVNUM).
Typically the latest revision should work for all tasks how-
ever to ensure accurate replication we record the revision
used for the MIREX submission. The SVNPATH is https:
//marsyas.svn.sourceforge.net/svnroot/marsyas/
trunk. See the Appendix for detailed instructions for
each task.

8 DISCUSSION OF RESULTS

Overall we were pleased with the performance of the Marsyas
submissions to MIREX 2009. In all tasks the Marsyas
submissions performed reasonably well. The detailed re-
sults are available from the MIREX 2009 webpage 1 so
in this section we only briefly highlight some of the evalu-
ation results that are specific to Marsyas. The run-time re-
sults are only available for some tasks so we can not com-
ment in detail about the superior run-time performance of
Marsyas. We expect that the Marsyas submissions are sig-
nificantly faster especially for the classification and sim-
ilarity tasks. For example for the audio music similarity
and retrieval the Marsyas submission is the only one that
completes under 1 hour. Another important highlight is
the excellent performance of our first entry to the auto-
matic music tag annotation were the Marsyas submission
was ranked 2nd.

9 FUTURE WORK

There is plenty of interesting future work to be explored.
Now that we have the MIREX Input/Output conventions
fully supported we are very excited about participating in
MIREX in the future. Our submissions this year can be
considered a baseline and we can only improve in the fu-
ture. In no particular order here are some of the directions
we would like to explore for the tasks we participated this
year: more complex audio clip representations and sim-
ilarities than the single vector approach, additional fea-
tures (rhythm-based, pitch/chroma based, stereo panning),
and better utilization of domain knowledge such as hier-
archies. In addition we hope to participate in more tasks
in the following years.

1 http://www.music-ir.org/mirex2009/index.php/
Main_Page

MusicMiner Mood
Marsyas F-Measure 0.293 0.211
Best F-Measure 0.311 0.219
Marsyas ROC 0.786 0.649
Best ROC 0.807 0.701

Table 2. Average Tag F-Measure and ROC for tag anno-
tation tasks

Rank Marsyas Best
Onsets 12/12 0.595 0.796
McKinney 8/11 0.415 0.548
Mazurka 9/11 0.321 0.678

Table 3. F-measure results for onset detection and beat
tracking

Table 3 shows classification accuracy results and rank-
ings of the best Marsyas submission for all the MIREX
classification tasks. Table 2 shows the tag annotation
results as average tag F-measure and average ROC for
Marsyas and the best submission for this task. In addition
the Marsyas tag annotation system performed quite well
(2/5) in the special tagatune evaluation (68.60% compared
to the best score of 70.10%).

Finally we would like to encourage other practitioners
to explore and hopefully contribute to Marsyas. We are
also happy to offer assistance to anyone interested in port-
ing their existing systems into Marsyas.

10 REFERENCES

[1] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a
library for support vector machines, 2001. Software
available at http://www.csie.ntu.edu.tw/
˜cjlin/libsvm.

[2] S. Dixon. Onset detection revisited. In Proc. Int.
Conf. on Digital Audio Effects (DAFx), 2006.

[3] Shantanu Godbole and Sunita Sarawagi. Discrim-
inative methods for multi-labeled classification. In
Proc. Pacific-Asia Conf. on Knowledge Discovery
and Data Mining, 2004.

[4] S. Ness, A. Theocharis, G. Martins, L., and
G. Tzanetakis. Improving automatic music tag an-
notation using stacked generalization of probabilis-
tic svm outputs. In Proc. ACM Multimedia, 2009.

[5] F. Pachet and P. Roy. Improving multilabel analy-
sis of music titles: A large-scale validation of the
correction approach. Audio, Speech, and Language
Processing, IEEE Transactions on, 17(2):335–343,
2009.

[6] G. Tsoumakas and I. Katakis. Multi label classifica-
tion: An overview. Int. Journal of Data Warehouse
and Mining, 3(3):1–13, 2007.

[7] G. Tzanetakis and P. Cook. Musical Genre Classifi-
cation of Audio Signals. IEEE Trans. on Speech and
Audio Processing, 10(5), July 2002.

[8] G. Tzanetakis, R. Jones, and K. McNally. Stereo
panning features for classifying recording produc-
tion style. In Proc. Int. Conf. on Music Information
Retrieval (ISMIR), 2007.

[9] George Tzanetakis. Marsyas-0.2: a case study in im-
plementing music information retrieval systems. In
Intelligent Music Information Systems. IGI Global,
2007. to appear.

[10] David H. Wolpert. Stacked generalization. Neural
Networks, 5:241–259, 1992.

11 APPENDIX

11.1 Audio Tagging (rev 3691)

Assumes train.txt is a training list file (files and tags) and test.txt is a testing list file (just files)
Step 1) Extract features for both lists

> bextract -ws 1024 -as 400 -sv -fe train.txt -w train.arff -od /path/to/workdir
> bextract -ws 1024 -as 400 -sv -fe test.txt -w test.arff -od /path/to/workdir

These two commands will generate two files in Weka .arff format that will be placed in the working directory specified.
Step 2) First stage automatic tag annotation
The kea command can take up to 30-50 minutes to compute and does not show any progress output until the full model is
trained.

> kea -m tags -id /path/to_working_dir -od /path/to/workdir
-w train.arff -tc test.arff -pr stage1_affinities.txt

stage1 affinities.txt should contain the predicted tag affinities for the test.txt collection and stage1 predictions.txt
should contain the predicted tag binary relevance file. Although the output of this stage can be directly evaluated we
have found that a second stage of stacked generalization where the tag affinities of each song are used as feature vectors
improves the results in most cases. In addition it gerates the files stacked train.arff and stacked test.arff which are used
for the second stage describe below.
Step3) Second stage (stacked generalization) for automatic tag annotation

> kea -m tags -id /path/to_workdir -od /path/to/workdir
-w stacked_train.arff -tc stacked_test.arff -pr stage2_affinities.txt
> ../../scripts/Ruby/threshold_binarization.rb train.txt
stage2_affinities.txt > stage2_predictions.txt

11.2 Audio Similarity(rev 3691)

Extract features:

> bextract -fe -sv filelist.txt -od /path/to/workdir -w marsyas_features.arff

(OPTIONAL) If stero files are available and filelist contains only stero files then additional stereo panning features can be
calculated as follows:

> bextract -fe -sv -st filelist.txt -od /path/to/workdir -w filelist.arff
> kea -m distance_matrix -id /path/to/workdir -od /path/to/workdir -w
filelist.arff -dm filelist_matrix.txt

The generated filelist matrix.txt contains the full distance matrix of all songs to all songs of filelist.txt.

11.3 Audio Classification Tasks (rev 3691)

Extract features, train classifier and predict for 1 fold:

./bextract -sv train.txt -tc test.txt -pr test_predicted.txt
-od /path/to/workdir -w features.arff

(the .arff file contains the calculated features in case anyone is interested) (OPTIONAL) If stereo files are available use
the following command to extract additional features based on stereo panning information:

./bextract -st -sv train.txt -tc test.txt -pr test_predicted.txt
-od /path/to/workdir -w stereo_features.arff

The executables can be launched in parallel for each fold to take advantage of multiple cores without a problem as long
as there are different scratch directories for each fold.

11.4 Audio Onset Detection (rev 3700)

./onsets soundExample.wav

Resulting soundExample.output will be saved in the same directory of the onsets executable.

11.5 Audio Beat Tracking (rev 3719)

This implementation contains two distinct versions, differentiated by its functional heuristics. The application outputs two
text files: one with the tempo measure (median IBI, in BPMs) - XXX medianTempo.txt; and other with the beat times, in
seconds - XXX.txt. For running each of them just use the following commands:

1-> ./ibt -s "squareCorr" input.wav outputDir/output.txt
2-> ./ibt -s "regular" input.wav outputDir/output.txt

NOTE: If no ouput directory is assigned, the executable dir and the audio filename will be assumed. If only the output
directory is assigned, the audio filename will be assumed.

