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ABSTRACT

This paper describes the method we submitted for the “Struc-

tural Segmentation” task at MIREX2009. The method de-

fines a fitness function for structural descriptions based

on the idea that all occurrences of a musical part should

be acoustically similar and differ from the occurrences of

other parts. The method creates a large set of potential

segments, estimates the probability of each two segments

to be occurrences of the same part, and uses these proba-

bilities in a fitness function. The function optimisation is

done with a greedy search algorithm.

1. INTRODUCTION

Music piece structure analysis refers to the task of provid-

ing a temporal segmentation of the piece into occurrences

of musical parts, such as “chorus” and “verse”, and group-

ing of the occurrences of a part. This kind of a analysis is

meaningful on pieces having a sectional form. An occur-

rence of a musical part is often 20–30 s in length and may

be repeated later in the piece.

Various methods for music structure analysis have been

proposed in the literature, for an overview of the basic

principles refer to [1]. The main method categorisation

provided in [2] divides the methods into “state” and “se-

quence” approaches. The former considers the piece to be

produced by a state machine, while the latter assumes that

the piece contains repeated sequences of musical events.

The method proposed in this paper belongs into the “state”

category, or it can be considered to belong to a third cate-

gory: “fitness” function based approaches.

The submitted method uses three acoustic features de-

scribing different aspects of the piece, creates several po-

tential segmentations, matches each segment pair with two

distance measures, and produces probabilities for the two

segments to be occurrences of the same part. The proba-

bilities are used in a fitness function for descriptions of the

piece structure, and a greedy search algorithm is employed

for the function optimisation. For more details, see [3].

This work was supported by the Academy of Finland, (application
number 129657, Finnish Programme for Centres of Excellence in Re-
search 2006–2011).

2. METHOD DESCRIPTION

The method starts by estimating a musical beat grid with

the method from [4]. The reliability of the estimation is

improved by a two-pass scheme: first, only a 20 s excerpt

is analysed. The produced period estimate is then used to

sharpen the prior distribution of beat length by setting the

Gaussian distribution mean to the estimated period value

and halving the original variance parameter value. Then

the entire signal is analysed. Still, the resulting beat grid

may have π-phase errors. The effect of this is reduced by

halving the period, producing a half-beat grid.

Raw acoustic feature extraction is done from 4096 sam-

ple frames with 50% overlap. 13 mel-frequency cepstral

coefficients (MFCCs) from the output of a 42-band trian-

gular mel-scaled filter bank are calculated and the low-

est coefficient is discarded. The second acoustic feature

used is chroma, which is calculated with the method de-

scribed in [5]. It estimates the saliences of different fun-

damental frequencies in the range 80–640 Hz, resamples

the frequency scale to a semitone scale by retaining only

the maximum salience in each semitone range, and finally

produces the chroma by octave folding. The features are

then temporally resampled to the beat-synchronised grid.

The acoustic features are then focused on two time scales

by Hanning window weighted median filtering. The finer

time-scale features are obtained by skipping the filtering,

while the coarser time-scale features are obtained with 33

and 65 frame filtering windows for MFCCs and chroma

respectively. In addition to MFCCs and chroma, a third

acoustic feature, rhythmogram [6], is calculated. The cal-

culation uses the onset detection accent function produced

by the beat estimation instead of the perceptual spectral

flux proposed in the original publication. The feature itself

is simply the autocorrelation of the accent function calcu-

lated in sliding windows of 33 half-beat frames in length.

All the features are finally normalised to zero mean and

unity variance over time.

From the five acoustic features (MFCC and chroma on

two temporal scales, and rhythmogram), separate self-distance

matrices (SDMs) are calculated using cosine distance mea-

sure. A set of candidate segmentation points is generated

with novelty vector calculation [7]. A Gaussian tapered

40× 40 checkerboard kernel matrix is correlated along the

main diagonals of the SDMs and the resulting novelty vec-

tors are summed. Maximum of 30 highest local maxima



with the minimum distance of 12 frames are then located

from the summed novelty vector and they are considered

to be potential segmentation points.

All possible segments between two candidate segmen-

tation points are created, and all non-overlapping segment

pairs are matched with two distance measures: stripe and

block. The stripe distance is calculated from the short

time-scale SDMs, while the block distance is calculated

from the coarser time-scale SDMs. The stripe distance be-

tween two segments is the dynamic time warping path cost

through the SDM submatrix the two segments define, nor-

malised by the length of the longer segment. The block

distance is the average element value in the submatrix.

The distance values d (si, sj) between two segments si

and sj are transformed into probabilities that the two seg-

ments are occurrences of the same musical part by apply-

ing a sigmoidal warping function

p (g(si) = g(sj)) = (1 + exp(z1d (si, sj) + z0))
−1

.

(1)

The sigmoid parameters z1 and z0 are calculated from train-

ing material (the data set TUTstructure07 was used here)..

The probabilities are then combined with geometric mean,

and a constraint prohibiting pairs with segments differring

more than by factor 1.2 in length is applied. The final fit-

ness function to be optimised is

P (E) =
∑

si∈S

∑

sj∈S

W (si, sj)l(si, sj , g), (2)

where

l(si,sj , g) = (3)
{

log (p̂ (g(si) = g(sj))) , if g(si) = g(sj)

log (1 − p̂ (g(si) = g(sj))) , if g(si) 6= g(sj)
.

In the equations above, E is the candidate structure descrip-

tion, S the set of segments si in the description, g(si) is the

group (musical part) in which the segment si is assigned

into, and W (si, sj) is the number of elements in the sub-

matrix defined by the two segments.

The optimisation of (2) is done with a greedy algorithm

proposed in [3]. A directed acyclic graph (DAG) is formed

by replicating each segment with a possible group assign-

ment to create the nodes. There is an edge between two

nodes if the two segments are temporally directly consecu-

tive. The task is to find the optimal path through the DAG.

It is fulfilled by a search which starts by inserting a single

token to the start node. At each iteration, the β best tokens

in each node are propagated to the following nodes and

their partial fitnesses are updated accordingly. Then, the

number of tokens in each node is reduced to α by discard-

ing the less fit tokens. The tokens arriving to the final node

contain a path through the DAG, and the path encodes a

segmentation and a grouping of the segments. The search

can be iterated until all tokens have reached the final node,

or some convergence condition is met. The implementa-

tion uses the values β = 10 and α = 50, and determines

convergence if the best description has not changed in 10

iterations.

ANO ANO2 GP MND PK

SO(%) 63.7 65.4 60.1 73.9 59.3

SU (%) 63.7 57.5 67.7 61.8 79.0

Fpair(%) 58.2 57.7 53.3 60.0 54.0

Ppair(%) 59.7 54.3 62.7 56.1 74.1

Rpair(%) 61.4 67.0 50.5 71.0 46.2

Rand(%) 76.2 73.5 75.9 74.8 79.2

FB@0.5s (%) 18.3 12.8 18.4 21.0 27.1

PB@0.5s (%) 16.0 12.5 14.6 15.8 24.3

RB@0.5s (%) 22.2 13.5 26.0 36.0 32.3

FB@3s (%) 59.0 58.4 50.0 39.9 53.1

PB@3s (%) 51.5 57.5 40.0 29.9 47.7

RB@3s (%) 71.4 61.5 69.8 69.2 63.2

∆T2C(s) 1.63 2.47 2.11 2.23 2.44

∆C2T(s) 3.55 3.21 3.52 3.44 3.51

Table 1. Evaluation results for all methods. The described

method is denoted with “PK”. See text for more details.

3. IMPLEMENTATION ISSUES

The results reported earlier in [3] were obtained with a

mixed Matlab and C++ implementation. The submitted

method is implemented as a command line executable com-

pletely in C++, and therefore the results may differ from

the ones reported earlier. The analysis time corresponds

approximately to half the length of the input signal when

run on a single core of a 1.86 GHz Intel Core2 CPU. The

time consumption inside the method is divided approxi-

mately to 35% for acoustic analysis, 50% for the segment

generation and matching, and the remaining 15% for the

search. The complexity of the search can be controlled

with the parameters β and α, but they also affect memory

consumption and extent of the search.

4. RESULTS

The evaluation results of all methods submitted to the task

are summarised in Table 1. 1 The method described in this

paper is denoted with “PK” in the results. The different

evaluation measures are denoted as follows

• SO, SU : over- and under-segmentation scores pro-

posed in [8].

• Fpair, Ppair, Rpair: frame pair clustering measure,

used in [9].

• Rand: Rand clustering index described in [10].

• FB, PB, RB: segment boundary retrieval score with

different allowed deviations.

• ∆T2C, ∆C2T: median time difference from anno-

tated segment boundaries to found ones, and vice

versa.

1 The results originate from http://www.music-ir.

org/mirex/2009/index.php/Music_Structure_

Segmentation_Results.



The results suggest that the proposed method has some

problems with over segmenting the result. This may show

either as providing the description on a finer time-scale

than the ground-truth, or as not locating the repeats of a

part. The former problem could be alleviated by increasing

the length of the feature median filtering window for the

“block” features, as well as increasing the relative weight

of the “block” information compared to the “stripe” infor-

mation. The latter problem, which is more likely cause for

the imbalanced performance, could be alleviated by ad-

justing the sigmoidal mapping function to produce larger

probabilities. These issues should be addressed in the fu-

ture work on the system.
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