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ABSTRACT

This paper presents our submission to the MIREX 2009
Audio Chord Detection task. It is an optimized version
of last year’s. The front-end of our system uses multi-
ple pitch tracking techniques to extract for each frame a
chroma profile that is more robust against chroma contri-
butions not originating from fundamental frequencies but
from harmonics thereof. The back-end of our system im-
plements a probabilistic framework for the simultaneous
recognition of chords and keys. The system works with
probabilities and density functions derived from Lerdahl’s
tonal distance metric and consequently, it needs no explicit
training.

1. IMPLEMENTATION OVERVIEW

Input wavefiles are converted to mono, resampled to 8 kHz
and split into frames. The frame length is 150 ms and the
hopsize is 20 ms. For each frame, the front-end calculates
a chroma profile. Consecutive frames are grouped per 20
in non-overlapping segments to improve the stability of
the output and to speed up the calculation. The average
chroma profiles of these segments are then supplied to the
back-end.

The back-end generates a chord label for each segment.
This label represents one of four triads (major, minor, di-
minished and augmented) that can be defined for each of
the 12 chromas. The key output of the back-end has been
discarded. The present implementation works offline, but
it could be changed into a streambased system with little
or no performance loss.

2. THE FRONT-END OF THE SYSTEM

As in many other systems, the acoustic observations are
chroma profiles, but the calculation of these profiles differs
from what is commonly used. In its simplest form, such a
profile is just a log-frequency representation of the spectral
content folded into a single octave. However, the problem
with such a representation is that e.g. the third harmonic of
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a pitch folds into a chroma that is located at +7 or -5 semi-
tones with repect to the fundamental, thus adding evidence
to a second pitch class that is not necessarily present in the
signal.

Our front-end uses the implementation proposed by Va-
rewyck et al [1]. It aims at maximally coupling the higher
harmonics to their fundamental frequency by the applica-
tion of multiple pitch tracking techniques. Ideally, if that
coupling were perfect, the chroma profile would only rep-
resent notes that are actually played.

The values of the chroma profile are scaled such that
they add up to 1, making them insensitive to the intensity
of the sound. Fundamental frequencies lower than 100 Hz
are considered to be bass-notes and are not allowed to con-
tribute to the profile. Although such bass-notes could make
a significant addition to the chord, mostly they just repeat
a note from the higher registers or they do not contribute
to the chord (e.g. a walking bass), and therefore we argue
that it does more harm than good to include them.

This chroma extractor is now publicly available in Marsyas
[2] or on request as a C++-library or Matlab-function.

3. THE BACK-END OF THE SYSTEM

3.1 Overview

The back-end follows a unified probabilistic framework
for the simultaneous recognition of chords and keys. It
was introduced by Catteau et al. [3], and slightly modi-
fied since then. The input is a sequence of chroma profiles
each representing one segment. The profiles form a se-
quence of length N of acoustic observations, denoted as
X = {x1, . . . ,xN}.

The back-end is expected to retrieve the key label se-
quence K̂ =

{
k̂1, . . . , k̂N

}
and the chord label sequence

Ĉ = {ĉ1, . . . , ĉN} which meets the following condition

K̂, Ĉ = arg max
K,C

P (K,C)P (X|K,C) (1)

The term P (X|K,C) is computed by an acoustic model
and P (K,C) by an a priori tonality model. By assuming
xi to be independent of kj , cj ∀i 6= j and by using a bigram
tonality model, this formula can be factorized into

K̂, Ĉ = arg max
K,C

N∏
n=1

P (xn|kn, cn)P (kn, cn|kn−1, cn−1)

(2)



The solution can then be found by a Dynamic Program-
ming search which retains at every segment index the op-
timal path to each of the 1152 eligible key-chord pairs: 48
chords (4 types of triads for 12 pitch classes) times 24 keys
(major and minor key for 12 pitch classes). The final result
is then identified as the path ending in the key-chord pair
with the highest probability at the final segment.

3.2 Acoustic model

The acoustic model expresses the likelihood of an obser-
vation given a proposed key-chord combination. The com-
ponents of the observation vector xn are assumed to be
independent of each other and of the key kn. This way
the resulting acoustic probability reduces to the product of
the probabilities for all pitch classes. Since a pitch class
does either belong to the proposed chord or not, there are
two probability distributions to distinguish. These distri-
butions are modeled by single-sided Gaussians centered
around X = 1/3 or 0 for a pitch class that does or does
not belong to the chord respectively. The reason for the
factor 3 is that we expect three pitch classes to contribute
to the chroma profile of a chord.

3.3 Tonality model

The tonality model describes the probability of different
transitions between chord-key pairs in the output sequence.
We can further convert the model into a product of a key
transition and a chord transition model:

P (kn, cn|kn−1, cn−1) = (3)

P (kn|kn−1, cn−1)P (cn|kn, kn−1, cn−1) (4)

Both transition models are derived from Lerdahl’s distance
metric [4] for measuring the dissimilarity between two key-
chord pairs. The underlying assumption of our system is
thus that transitions between similar key-chord combina-
tions tend to occur more frequently than transitions be-
tween dissimilar combinations. This may be not the best
possible premise but it has the advantage of not requiring
any training of the tonality model, and consequently, of not
risking to create a model whose quality depends too much
on the selection of the training set.

We assume on intuitive grounds that the influence of
cn−1 on the key transition probability will be less than that
of kn−1, and therefore we simply ignore it.

The probability of staying in the same key is fixed (sys-
tem parameter), and the probabilities for going to one of
the different other keys are derived from the Lerdahl dis-
tance between the chords on the first degree of the these
keys. An exponential is used to convert distances into prob-
ability estimates.

For the chord transition probability we again assume in-
tuitively that kn−1 accounts for less than cn−1 and kn, and
therefore we ignore it. We further make a distinction be-
tween transitions ending in a chord cn that is diatonic in kn

or not. The balance between both is adjusted by a system
parameter (set to a 0.8-0.2 in favour of diatonic endings).
The probability of transitions between chords cn−1 and cn

both diatonic in kn is further divided based on the Lerdahl
distance between chords in the same key, but weighted by a
function that gives preference to chords with the key tonic
or dominant as root. Again an exponential is used to con-
vert distances to probability estimates. The probability of
all non-diatonic transitions is uniformly distributed such
that

∀X, Z :
∑
Y

P (cn = X|cn−1 = Y, kn = Z) = 1 (5)

4. RESULTS

The system described above entered the MIREX compe-
tition as ”PVM1”. A baseline system was submitted as
well under the name ”PVM2”. This baseline is a template
matcher which uses the described features averaged over
a sliding window and calculates the cosine similarity be-
tween the extracted chroma profiles and 48 binary tem-
plates. The profile with the highest similarity then gives
its name to the frame. The inclusion of the baseline ex-
tractor in the contest allows for a more precise comparison
between the performance of our main submission on the
MIREX test set and on our own data.

When looking at the results, we see that at 68%, the
performance of our main submission is about average. The
best submissions all lie closely together, with a maximum
of 71% for Mauch & Dixon and Oudre, Grenier & Fevotte.
The result of the baseline (65%) is somewhat better than
expected, because the difference between the two systems
is more than 5 % on our own data. Unfortunately, no com-
parison with last year’s results can be made at this moment,
since the results for just the Beatles dataset are not (yet?)
available.

5. FUTURE WORK

We plan on evaluating our system on the Beatles dataset, in
particular paying attention to the issue of tunings deviating
from the reference 440 Hz, which recently came up on the
MUSIC-IR mailinglist. In its current implementation, no
tuning algorithm is included because this did not prove to
be an issue on our test data. Also, using the Beatles dataset
will allow us to adapt our transition probabilities to this
specific case.
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