

Using Sequential Patterns as Short-Term and Long-Term Features for
Audio Genre Classification

Jia-Min Ren Zhi-Sheng Chen Jyh-Shing Roger Jang
Department of Computer Science, National Tsing-Hua University, Taiwan

{jmzen0921, bobon, jang}@mirlab.org

ABSTRACT

This extended abstract describes a submission to the Mu-
sic Information Retrieval Evaluation eXchange (MIREX)
2009 for the audio genre classification task. We im-
proved the approach [1] by mining sequential patterns
from audio transcriptions according to each genre. More-
over, we consider these patterns as either short-term fea-
tures or long-term features for further classifiers design.

1. SYSTEM DESCRIPTION

The system consists of four stages, as diagrammed in
Figure 1. The first stage is based on [2], which aims to
tokenize a song into a string of hidden Markov model
(HMM) indices (these models are called acoustic seg-
ment models, ASM). Then we mine sequential patterns
for each genre in the next stage. The third stage attempts
to generate two unit-song matrices which denote the oc-
curring frequency of the specific combinations of ASM
units for each song; the first unit-song matrix is the same
as [2], and we will describe how to generate the second
one in the following sections. In the final stage, these two
matrices are normalized and utilized for the classifiers
design. We submit four versions of algorithms to evalu-
ate our performance.

1.1 Tokenizing Audio as Transcription

The tokenization stage which can be found in [2] token-
izes a song into a string of ASM indices. The idea is
analogous to tokenizing an utterance into a string of
words or phonemes in the field of automatic speech rec-
ognition (ASR). First, we perform a maximum-likelihood
segmentation algorithm [3] to tokenize the training cor-
pus into acoustic segments. Next, by quantizing the seg-
ment centroids, we build a vocabulary of ASMs, which
consists of small acoustic tokens. Then, a string of sym-
bols (e.g., the ASM indices that best represent segments
of a song) can represent a temporal transcript for a song.
Besides, we need to refine these acoustic segment models
to capture more exact spectral information. Specifically,
these initial transcripts will be considered as a reference
to re-train the acoustic models via Baum-Welch estima-
tion, and then Viterbi decoding utilizes the updated
ASMs to create new transcriptions. This iterative process
is repeated until convergence.
 In this system, we model each ASM as a 3-state
HMM (8-component GMM with a diagonal covariance
matrix in each state). In the generation of initial transcrip-

tions, we only use the first 8 MFCCs (frame size is 30ms
and no overlap) to capture the slowly changing spectral
shape of songs. In the procedure of re-estimating acoustic
models and creating new transcriptions, we use 39
MFCCs (frame size is 30ms, and overlap is 10ms) instead.

Figure 1. Diagram of our system.

1.2 Mining Sequential Patterns from Each Genre

Given a database of music transcriptions and a minimum
support (minSup) threshold which is used to determine
whether a mined pattern is frequent or not, we can apply
ApriorAll [4] algorithm to find the sequential patterns.
Table 1 shows an example of music transcriptions.

 Song Id Transcription
1 (12, 23, 45, 34, 40, 12)
2 (12, 34, 23, 34, 10)
3 (23, 45, 25, 23)
4 (45, 20, 23, 43, 34, 25)
5 (12, 23, 34, 25)

Table 1. An example of transcriptions within the same
audio genre (number denotes the ASM index).

 If minSup is set to 0.6 (which denotes a mined
sequential pattern needs to exist in at least 3 times out of
these 5 transcriptions), we can mine sequential patterns
as (45), (23, 25) and (12, 23, 34). In our experiments, the
minSup was set empirically to 0.8. Note that the items in
sequential patterns need not to be consecutive but the or-
der must be preserved. Moreover, a pattern is said to be a
sequential pattern if it is not contained in any other pat-
tern, i.e., pattern is said to be contained in pat-
tern (if there exists integers i1 < i2 < … < in such
that , , …, . Thus, (12), (23), (25),

(34), (12, 23), (12, 34) and (23, 34) are not sequential
patterns, since they are contained in those three mined
sequential patterns. Please refer to

(naaa ...21

)
2ib= a

)
nbbb ...21

11 iba = a2 nin b=

[4] for more details
about the mining procedure.

After mining sequential patterns from each mu-
sic genre, these patterns can be considered as temporal
features to facilitate the classification task, since the long-
term temporal structures of the music are explored where
most music of the same genre have such kind of patterns.

1.3 Generating Unit-Song Matrix

A unigram count is the occurrence of an individual ASM
and a bigram count is the occurrence of an ordered ASM
pair [2]. For instance, if a transcription of a song is (2, 12,
2), then we will get a vector which has 2 in the location
of ASM unit 2, and a 1 in the location for ASM units 12,
(2, 12) and (12, 2), but 0 in the locations for the other
ASM units. In our system, 128 ASMs are trained. So the
resulting vector for a song has a dimension of
128+128*128=16512.
 Once we mine sequential patterns for each genre,
then we can count how many times this pattern appears in
a transcription as follows. Given a sequential pattern

()nssss ...21= with length n and a transcription of ASMs
()mtttt ...21= with length m, the count for s is defined as,

Unit_count = 0;
while (1) {

If s is not contained in t, then break;
Find the minimal index j such that s is

contained in ()jttt ...21 ;

If no such j exists, then break;
Remove ()jttt ...21 from t;

unit_count = unit_count + 1; }

 After counting how many times these patterns
appear in each transcription, we can get another unit-song
matrix, where a unit refers to a sequential pattern.

1.4 Training Classifiers

Before training classifiers, we applied latent semantic
analysis (LSA) to convert unit-song matrices into
weighed unit-song matrices. This procedure is also ap-
plied in [2]. Next, we utilized support vector machine
(SVM) with linear kernel [5] and K-nearest neighbor (k =
3) as classifiers in our system. For each unit-song matrix

(where each vector is a feature of a song), we can train
two classifiers. So totally four classifiers are in our sub-
mission, and we evaluate the performance of these classi-
fiers separately.

Algorithm 1: Feature: uni & bigram unit-song matrix
 Classifier: KNN (K=3)
Algorithm 2: Feature: uni & bigram unit-song matrix
 Classifier: SVM (linear kernel function)
Algorithm 3: Feature: sequential pattern unit-song matrix
 Classifier: KNN (K=3)
Algorithm 4: Feature: sequential pattern unit-song matrix
 Classifier: SVM (linear kernel function)

2. RESULTS

Table 1 shows the result of our approaches (where Algo-
rithm 2 in the mixed set ran out of memory). The best
recognition rates of this task are about 73% and 74% in
the mixed and Latin sets, respectively. Although the pro-
posed methods perform worse than the most of other
submissions, it is worth noting that when sequential pat-
tern counts are used as features, they perform better than
the use of uni & bigram counts as features. This implies
that such kind of feature does really capture the long-
term structure information to facilitate the classification
task. In the future, we will try to use some timbral fea-
tures, e.g. flux, centroid, skew and kurtosis, to do this
task.

 Set

Algo.

Mixed Latin

Algorithm 1 32.50% 38.93%

Algorithm 2 OOM 52.43%

Algorithm 3 37.71% 46.78%

Algorithm 4 50.99% 55.22%
Table 2. Recognition results of the proposed methods.

3. REFERENCES

[1] J. Reed and C.-H. Lee: “A study on music genre
classification based on universal acoustic models,”
Proceedings of the International Symposium on
Music Information Retrieval, pp. 89-94, 2006.

[2] J. Reed and C.-H. Lee: “On the importance of
modeling temporal information in music tag
annotation,” Proceedings of International
Conference on Acoustic, Speech and Signal
Processing, pp. 1873-1876, 2009.

[3] T. Svendsen and F. Soong: “On the automatic
segmentation of speech signals,” Proceedings of

International Conference on Acoustic, Speech and
Signal Processing, pp. 77-80, 1987.

[4] R. Agrawal and R. Srikant: “Mining Sequential
Patterns,” Proceedings of 1995 International
Conference on Data Engineering, pp. 3–14, 1995.

[5] C.-C. Chang and C.-J. Lin, LIBSVM: a library for
support vector machines, 2001. Software available
at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

