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ABSTRACT 

This extended abstract describes a submission to the Mu-
sic Information Retrieval Evaluation eXchange (MIREX) 
2009 for the audio genre classification task. We im-
proved the approach [1] by mining sequential patterns 
from audio transcriptions according to each genre. More-
over, we consider these patterns as either short-term fea-
tures or long-term features for further classifiers design. 

1. SYSTEM DESCRIPTION 

The system consists of four stages, as diagrammed in 
Figure 1. The first stage is based on [2], which aims to 
tokenize a song into a string of hidden Markov model 
(HMM) indices (these models are called acoustic seg-
ment models, ASM). Then we mine sequential patterns 
for each genre in the next stage. The third stage attempts 
to generate two unit-song matrices which denote the oc-
curring frequency of the specific combinations of ASM 
units for each song; the first unit-song matrix is the same 
as [2], and we will describe how to generate the second 
one in the following sections. In the final stage, these two 
matrices are normalized and utilized for the classifiers 
design. We submit four versions of algorithms to evalu-
ate our performance. 

1.1 Tokenizing Audio as Transcription 

The tokenization stage which can be found in [2] token-
izes a song into a string of ASM indices. The idea is 
analogous to tokenizing an utterance into a string of 
words or phonemes in the field of automatic speech rec-
ognition (ASR). First, we perform a maximum-likelihood 
segmentation algorithm [3] to tokenize the training cor-
pus into acoustic segments. Next, by quantizing the seg-
ment centroids, we build a vocabulary of ASMs, which 
consists of small acoustic tokens.  Then, a string of sym-
bols (e.g., the ASM indices that best represent segments 
of a song) can represent a temporal transcript for a song. 
Besides, we need to refine these acoustic segment models 
to capture more exact spectral information. Specifically, 
these initial transcripts will be considered as a reference 
to re-train the acoustic models via Baum-Welch estima-
tion, and then Viterbi decoding utilizes the updated 
ASMs to create new transcriptions. This iterative process 
is repeated until convergence.  
 In this system, we model each ASM as a 3-state 
HMM (8-component GMM with a diagonal covariance 
matrix in each state). In the generation of initial transcrip-

tions, we only use the first 8 MFCCs (frame size is 30ms 
and no overlap) to capture the slowly changing spectral 
shape of songs. In the procedure of re-estimating acoustic 
models and creating new transcriptions, we use 39 
MFCCs (frame size is 30ms, and overlap is 10ms) instead. 

Figure 1. Diagram of our system. 

1.2 Mining Sequential Patterns from Each Genre  

Given a database of music transcriptions and a minimum 
support (minSup) threshold which is used to determine 
whether a mined pattern is frequent or not, we can apply 
ApriorAll [4] algorithm to find the sequential patterns. 
Table 1 shows an example of music transcriptions. 

 Song Id Transcription 
1 (12, 23, 45, 34, 40, 12) 
2 (12, 34, 23, 34, 10) 
3 (23, 45, 25, 23) 
4 (45, 20, 23, 43, 34, 25) 
5 (12, 23, 34, 25) 

Table 1. An example of transcriptions within the same 
audio genre (number denotes the ASM index). 



  
 

 If minSup is set to 0.6 (which denotes a mined 
sequential pattern needs to exist in at least 3 times out of 
these 5 transcriptions), we can mine sequential patterns 
as (45), (23, 25) and (12, 23, 34). In our experiments, the 
minSup was set empirically to 0.8. Note that the items in 
sequential patterns need not to be consecutive but the or-
der must be preserved. Moreover, a pattern is said to be a 
sequential pattern if it is not contained in any other pat-
tern, i.e., pattern  is said to be contained in pat-
tern (  if there exists integers i1 < i2 < … < in such 
that , , …, . Thus, (12), (23), (25), 

(34), (12, 23), (12, 34) and (23, 34) are not sequential 
patterns, since they are contained in those three mined 
sequential patterns. Please refer to 

( naaa ...21

)
2ib= a

)
nbbb ...21

11 iba = a2 nin b=

[4] for more details 
about the mining procedure. 

After mining sequential patterns from each mu-
sic genre, these patterns can be considered as temporal 
features to facilitate the classification task, since the long-
term temporal structures of the music are explored where 
most music of the same genre have such kind of patterns. 

1.3 Generating Unit-Song Matrix 

A unigram count is the occurrence of an individual ASM 
and a bigram count is the occurrence of an ordered ASM 
pair [2]. For instance, if a transcription of a song is (2, 12, 
2), then we will get a vector which has 2 in the location 
of ASM unit 2, and a 1 in the location for ASM units 12, 
(2, 12) and (12, 2), but 0 in the locations for the other 
ASM units. In our system, 128 ASMs are trained. So the 
resulting vector for a song has a dimension of 
128+128*128=16512.  
 Once we mine sequential patterns for each genre, 
then we can count how many times this pattern appears in 
a transcription as follows. Given a sequential pattern 

( )nssss ...21=  with length n and a transcription of ASMs 
( )mtttt ...21=  with length m, the count for s is defined as,  

Unit_count = 0; 
while (1) { 

If s is not contained in t, then break; 
Find the minimal index j such that s is 

contained in ( )jttt ...21 ; 

If no such j exists, then break; 
Remove ( )jttt ...21  from t; 

unit_count = unit_count + 1;  } 

 After counting how many times these patterns 
appear in each transcription, we can get another unit-song 
matrix, where a unit refers to a sequential pattern.  

1.4 Training Classifiers 

Before training classifiers, we applied latent semantic 
analysis (LSA) to convert unit-song matrices into 
weighed unit-song matrices. This procedure is also ap-
plied in [2]. Next, we utilized support vector machine 
(SVM) with linear kernel [5] and K-nearest neighbor (k = 
3) as classifiers in our system. For each unit-song matrix 

(where each vector is a feature of a song), we can train 
two classifiers. So totally four classifiers are in our sub-
mission, and we evaluate the performance of these classi-
fiers separately.  
 
Algorithm 1: Feature: uni & bigram unit-song matrix 
         Classifier: KNN (K=3) 
Algorithm 2: Feature: uni & bigram unit-song matrix 
         Classifier: SVM (linear kernel function) 
Algorithm 3: Feature: sequential pattern unit-song matrix 
        Classifier: KNN (K=3) 
Algorithm 4: Feature: sequential pattern unit-song matrix 
        Classifier: SVM (linear kernel function) 

2. RESULTS 

Table 1 shows the result of our approaches (where Algo-
rithm 2 in the mixed set ran out of memory). The best 
recognition rates of this task are about 73% and 74% in 
the mixed and Latin sets, respectively. Although the pro-
posed methods perform worse than the most of other 
submissions, it is worth noting that when sequential pat-
tern counts are used as features, they perform better than 
the use of uni & bigram counts as features. This implies 
that such kind of feature does really capture the long-
term structure information to facilitate the classification 
task. In the future, we will try to use some timbral fea-
tures, e.g. flux, centroid, skew and kurtosis, to do this 
task.  

 

             Set 

Algo. 

Mixed Latin 

Algorithm 1 32.50% 38.93%

Algorithm 2 OOM 52.43%

Algorithm 3 37.71% 46.78%

Algorithm 4 50.99% 55.22%
Table 2. Recognition results of the proposed methods. 
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