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ABSTRACT

RS1-6. This entry for MIREX’s multiple frequency esti-
mation is based on the very common method of Nonneg-
ative Matrix Factorization (NMF). By adding regulariza-
tions specific to analysis of harmonic signals, using a har-
monic basis and parameterizing the used distortion mea-
sure, a more accurate and parameterized algorithm has been
developed. Its parameters are optimized with a random
optimization algorithm on a dataset of piano recordings
synchronized with MIDI data (treated as the groundtruth
data). F-measure is maximized for each of the four fre-
quency bands separately, resulting in four sets of parame-
ters. For each parameter set the NMF algorithm is run and
their results are concatenated for maximal accuracy. Be-
fore performing NMF, the input signal is separated into a
harmonic part and a percussive part. The former is used to
determine pitches existing in the recording, while the latter
for accurate onset detection. The concatenated note ac-
tivities are thresholded and median-filtered and very short
notes are removed according to a note length model trained
on the RWC database’s piano recordings. Finally, the notes
are detected as groups of non-zero note activities and their
onsets are associated with the closest onsets detected from
the percussive part.

1. DATA FLOW OVERVIEW

Before the analysis is started, the input signal is separated
into a harmonic part and a percussive part. The harmonic
part is used to determine pitches existing in the recording,
while the percussive part is later used for accurate onset
detection. The harmonic analysis is done by means of reg-
ularized harmonic NMF (described in section 2), which is
performed four times, for four disjoint frequency ranges
with different sets of parameters. The results are then con-
catenated to cover the full piano note range. The result-
ing note activities are thresholded and median-filtered and
notes that are too short are removed, according to a note
length model, that had been trained on the RWC database’s
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Figure 1: Data flow of the algorithm.

piano recordings. Finally, the notes are detected as series
of non-zero note activities and their onsets are snapped to
the closest onsets detected from the percussive part.

2. NONNEGATIVE MATRIX FACTORIZATION

NMEF is a technique of approximating a data matrix X with
a product of two matrices:

X =~ AS = X. 1)

Both resulting matrices are nonnegative in terms of their el-
ements and are obtained through minimalization of a Breg-
man divergence, defined as:

Dy (X, AS) = [p(X)—¢(AS)—¢'(AS)(X-AS)|. (2)

where ¢ : R — R is a convex generating function with
a continuous first derivative. NNMA is an optimization
problem with the penalty function being a Bregman di-
vergence between the data X and its approximation AS
and with a constraint of nonnegativity [1]. It can be easily
solved using the Karush-Kuhn-Tucker conditions [2]. By
minimizing the divergence between the data X and its ap-
proximation AS we obtain a pair of multiplicative update
rules that, used alternately, leads to the optimal factoriza-
tion:

AT (X ® ¢ (AS))

S =8O T AG 7 (AS) 3)
(X © ¢ (AS))ST

A= ACTASE (AS))ST" )

We chose to narrow the possible choice of generating func-
tions to a simple family of divergences by defining:

o' (@) =2, ®)



This family of divergences is virtually identical to the beta
divergence proposed by Kompass in [3] with only few small
differences. Four important divergences belong to that fam-
ily: Euclidean distance for r = 0, the KL- and I-divergence
for r = 1 and the Itakura-Saito divergence for r = 2, all of
which are commonly used in NMF.

3. HARMONIC BASIS MATRIX

Using an unconstrained basis matrix poses a series of prob-
lems. Basis vectors need to be analyzed and assigned to a
particular pitch, prior to the analysis of the note activity
matrix, which introduces additional errors to the process.
However, because note events do not occur sparsely and
independently, and their spectra change greatly over time,
using an unconstrained basis usually results in basis vec-
tors that do not even have a harmonic structure, making
the pitch estimation difficult or impossible. Furthermore,
results for an unconstrained basis are very different each
time the algorithm is run, and thus very difficult to compare
and evaluate. That is why we firmly believe that a har-
monic basis matrix with vectors constrained to harmonic
structures strictly corresponding to notes (of, for instance,
the diatonic scale) is a must when it comes to multipitch
analysis. Analysis of the note activity matrix in this case
is straightforward, as each row contains amplitudes of a
single note.

Basis harmonicity can be achieved in three ways. We
can either: use a fixed harmonic basis vectors (i.e. only
use eq. 3), use a basis matrix pretrained on solo instrument
data, or adapt the harmonic structure to the data. In the first
approach we use an artificial harmonic spectra with par-
tials’ amplitudes decreasing exponentially with frequency.
It would seem like an oversimplification, but, as we will
see later, this method yields very good results, especially

when additional penalties are used, and the overfitting present

in the other two methods is avoided. In the second ap-
proach, we use averaged note spectra obtained from the
recordings of piano taken from the RWC database, which
gives better results than the first method, but the perfor-
mance drops slightly when different instrument is used.

In the third approach, proposed by us in [4], we use an
artificial harmonic basis from the first method and adapt it
in a way that changes only the partials’ amplitudes, leav-
ing the overall harmonic structure intact. This can be eas-
ily achieved without modifying the existing algorithm, be-
cause zero-valued elements of basis vectors remain at zero
throughout the learning process due to its multiplicative
nature. We could therefore initialize the basis to have zeros
everywhere but at the positions of fundamental frequencies
of notes from a specific range of the 12-TET (Twelve-tone
Equal Temperament) scale and at their harmonics, thus
constraining the solution space to harmonic factorizations
only.

4. REGULARIZATIONS

NNMA can be extended to include additional penalties on
both matrices. In this case, instead of minimizing a Breg-
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Figure 2: Circulant weighting decorrelation matrices: (a)
a matrix that penalizes cross-correlation between activities
of close notes and between notes in a common harmonic
relation (octave 1:n, major third 5:4 and perfect fifth 3:2),
(b) a matrix that encourages temporal smoothness; an ex-
ponential smoothness profile was used.

man divergence, the following objective function is mini-
mized
Dy (X, AS) + a(A) + 5(8), ©)

where « and 3 are the penalty functions. The update rules
for NNMA become

(X ® ¢"(AS))ST

AT AOTRSE (AS)ST + Vaad)
" T

S—So (X © ¢ (AS))S @)

(AS © ¢"(AS))ST + Vsf(S)

This allows the user to have greater impact on the resulting
factorization. However, caution must be exercised when
designing these additional penalty functions, as they might
cause the solution to become negative and make the al-
gorithm unstable. Nevertheless, in our experience, using
only penalties with positive derivative led to a stable al-
gorithm. Among the note activity matrix penalties used
most successfully by us are: the sparseness and the cross-
correlation penalties, and the time smoothness objective.
To obtain sparser note activities we employ the /,-norm
with p < 2:
Bi(S) = p|S”], ©)

Vsfi(S) = upSP~". (10)

The cross-correlation penalty can be used to decrease
the crosstalk between activities of different notes. The
penalty function is defined as:

B2(8) = 2 > Wi jSinSik = p2| W © (887)[, (11)
ik

where W is a weighting matrix. In order to penalize only
cross-correlation between different notes, we set W ; = 0.
Also, the weights will usually only depend on the interval
between the notes and the weighting matrix will become
circulant. In this case we simply get:

Vsf2(S) = 2u2 WS (12)

By using this penalty we can also decrease the number
of the most common pitch detection errors: octave errors
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Figure 3: F-measure measured for different parameter sets
for different note ranges. Red dots mark the parameter sets
chosen for particular note ranges.

(by increasing all weights W; = 0 (mod 12)), major third
errors (by increasing all W; = 4) and perfect fifth errors
(by increasing all W; = 7). An example of a weighting
matrix constructed in this manner is presented in Fig. 2a.

A very similar penalty can be used to encourage tempo-
ral smoothness in a way quite similar to the one presented
in [5], but using less complicated penalty function:

B3(8) = —piz Y ViiSkiSkj = —ns|VO(STS)|, (13)
i,j,k

where V is a weighting matrix. As with the note decorre-
lation penalty, using a circulant matrix with nullified main
diagonal leads to a simple derivative:

VsB3(8) = —2u3SV. (14)

As mentioned before, using regularizations with negative
derivative may lead to instability, so we used exp(5s(S))
in place of 14, which should lead to equivalent solutions
thanks to monotonicity of the exponential function. An
example of weighting matrix V is depicted in Fig. 2b.

5. NMF STITCHING

‘We have noticed that different NMF parameters yield bet-
ter results for different frequency ranges. This lead to the
idea of stitching results of differently parameterized algo-
rithms to get the most optimal results. In our approach we
used 4 parameter sets for 5 note ranges (see Fig. 3).

6. HARMONIC FILTERING

Before the multiple frequency estimation procedure, the
input signal was separated in to harmonic and percussive
parts using the algorithm presented in [6]. In case of piano
recordings, this effectively separates the onset noise from
the temporarly smooth notes. The former cas be used for
an accurate onset detection, while the latter for multiple
frequency estimation unaffected by the often troublesome
onset noise.
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Figure 4: Note activities obtained for different methods
with MIDI reference.
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Figure 5: Separation of power spectrogram (a) into har-
monic (b) and percussive (c) parts.

The separation was done by using the following update
rules:

W =W, (15)
P=P", (16)
H=H", 17)
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7. ONSET DETECTION

Note detection was performed on the percussive part of the
input data. Energy was summed over all frequencies of
the power spectra and the resulting power envelope was
differentiated and thresholded to give the possible onset
positions. The threshold was determined to yield maximal
recall, assuring that the correct onset positions were among
the detected ones.

8. POSTPROCESSING

A simple postprocessing is applied to the stitched note ac-
tivity matrix: thresholding, median filtering and short note
removal. Threshold has been trained on the Chopin piano
database, i.e. it was chosen to minimize the precision with
minimal decrease in recall. Its value was determined to be
0.095. Median filter’s length was chosen to be between 3
and 5 frames. After that notes that were too short were
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Figure 6: Harmonic filtering helps to greatly improve on-
set detection accuracy.

removed. Minimal note length was determined based on a
note envelope model trained on the Chopin piano database.

Finally, notes were detected as group of nonnegative
note activities and their onsets were moved to the closest
detected onsets, if there were any closer than 100 ms. If
there was no onset closer than 500 ms, the note was re-
moved. If a detected onset was close enough to a suffi-
ciently low local minimum in a detected note, the note was
split at this position into 2 notes.
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