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ABSTRACT

This paper describes our submission to the 2009 MIREX
Audio Chord Detection Contest. Improvements over the
submission from last year [1] reduce feature correlation,
account for differences in tuning, and incorporate mini-
mum classification error (MCE) training in obtaining chord-
level HMMs. Experiments demonstrate that classification
rates improve with tuning compensation and MCE discrim-
inative training. The task is evaluated under the same setup
as the 2008 MIREX Audio Chord Detection Contest must
be used.

1. IMPLEMENTATION OVERVIEW

The baseline system adopted in this study is the current
state-of-the-art and placed first in the 2008 MIREX Audio
Chord Detection task (Task 2: no pre-training) [3]. To at-
tenuate percussive sounds, the harmonic-percussive source
separation (HPSS) algorithm [4] is used in the baseline sys-
tem to isolate the harmonic part of the spectrum prior to
chroma extraction and maximum likelihood (ML) estima-
tion. This paper incorporates the improvements of auto-
matic tuning compensation, decorrelation through a DFT
of the chroma vector, and minimum classification error
(MCE) training [5].

2. FEATURE EXTRACTION

2.1 Harmonic/Percussion Source Separation

As noted in [6], transients and noise decrease the chord
recognition accuracy in chroma-based approaches. This
is largely due to percussive sources, which spread energy
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across the entire frequency spectrum. This paper uses the
HPSS algorithm [4], which integrates the harmonic and
percussive separation into the objective function

J(H,P) =
1

2σ2
H

∑
k,n

(Hk,n−1 −Hk,n)2

+
1

2σ2
P

∑
k,n

(Pk−1,n − Pk,n)2 (1)

where Hk,n and Pk,n are the values of the power spectrum
at frequency index k and time index n for the harmonic
spectrum, H, and the percussive spectrum, P, respectively.
The parameters σ2

P and σ2
H need to be set experimentally.

To ensure that each time-frequency component of the har-
monic and percussive spectrum components sum to a value
equal to the original spectrum, Wk,n, and to ensure that
power spectrums remain positive, the following constraints
are added to the minimization of (1)

Hk,n + Pk,n = Wk,n (2)

Hk,n ≥ 0 (3)

Pk,n ≥ 0 (4)

Note that minimizing (1) is equivalent to maximum like-
lihood estimation under the assumption that (Hk,n−1 −
Hk,n) and (Pk−1,n − Pk,n) are independent Gaussian dis-
tributed variables. This simplification leads to a set of
iterative update equations for the harmonic and percus-
sive spectrums. At the output of HPSS are two wave-
forms; one containing a percussive-dominated spectrum
and the other containing a harmonic-dominated spectrum.
The harmonic-dominated spectrum is retained for further
processing and the percussive-dominated spectrum is dis-
carded. Further details can be found in [4].

2.2 Chromagram

Chroma vectors are the most common features in audio
chord detection algorithms and describe the energy distri-
bution among the 12 chromas; i.e., pitch classes. To derive



chroma vectors, the harmonic-emphasized music signal is
first downsampled to 11025 Hz. Next, the signal is bro-
ken into frames of 2048 samples with a 50% overlap. The
constant Q transform [7] provides spectral analysis using a
logarithmic spacing of the frequency domain, whereas the
traditional discrete Fourier transform (DFT) uses a linear
spacing of the frequency domain. The center frequency
of each bin is designed to match the equal-temperament
scale [8]. Next, chromagram features are calculated for
frame n as

cn(b) =
R∑
r=0

|S(b+ rβ)| (5)

where b = {1, 2, ..., β} is the chroma bin number, β is the
dimensionality of the chroma vector, and R is the number
of octaves considered. In this submission, β is set to 60
and reduced to 12 during tuning compensation.

2.3 Tuning Compensation

Because HPSS is very effective in seperating percussive
sources and other transients from the harmonic spectrum,
a simplified form of the tuning compensation in [2] is im-
plemented. Specifically,a 60-dimension chroma vector for
each frame in a song is extracted, so that each note consid-
ered is divided into five bins

c̃(α)
n (b) =

R∑
r=0

|S(b+ α+ rβ)| (6)

where α = {1, 2, 3} and b = {1, 2, . . . , 12}. The algo-
rithm then retains the set the member of α that produces
the chroma vector with the greatest Euclidean length; i.e.,
maximum energy:

cn = arg max
c̃
(α)
n

(
c̃(α)
n · c̃(α)

n

)
(7)

2.4 Dynamic Features

In speech recognition, using dynamic features such as delta
cepstrums are often used with static features and known
to increase recognition rates. Similar to delta cepstrums,
dynamic features of chroma vectors (delta chroma vectors)
can be used in chord detection. The motivation behind the
use of delta chroma vectors is to obtain higher accuracy
on chord boundaries since delta chroma vectors have large
values on sound changes.

To reduce noise in the derivative calculation, delta chroma
vectors can be obtained from a weighted regression analy-
sis of chroma vector sequences. The delta chroma vector
at time τ can be calculated using the δ previous and future
samples:

∆c(l, τ) =

δ∑
k=−δ

k · w(k)c(l, τ + k)

δ∑
k=−δ

k2w(k)

(8)

Figure 1. Cross correlations of chroma features. Right:
original chroma features. Left: DFT chroma features.
Dark shades (or red if in color) indicate higher correlation
(light shades (or blue in color) indicate low correlation.

where the weights, w(k), are an even function where
c(l, τ) is chroma feature l at time τ .

As noted in [2], chroma features are highly correlated
because harmonics of different pitch classes overlap and is
demonstrated in the left part of Figure 1. For instance, the
third harmonic of C4 (261.63 Hz fundamental, 784.89 Hz
third harmonic) is highly confusable with G5 (783.99 Hz
fundamental). However, as shown on the right of Figure 1,
the resulting feature dimensions have less cross-correlation
after applying a DFT on the chroma features. This is sim-
ilar to the use of the discrete cosine transform to reduce
correlation in image processing and in the calculation of
Mel-frequency cepstral coefficients

3. CHORD MODELING

3.1 HMM classifier

The optimal chord sequence, W ∗ is decoded such that [9]

W ∗ = arg max
W

P (W |C)

= arg max
W

P (C|W )P (W )
P (C)

∝ arg max
W

P (C|W )P (W ) (9)

where C = {c1, c2, . . . , cN} is the sequence of chroma
vectors. The probabilities of the acoustic model and tonal-
ity model are P (C|W ) and P (W ), respectively. For this
paper, a bigram tonality model is estimated from the train-
ing data. The acoustic model is the probability of pro-
ducing the observed chroma vectors for a chord W and
is modeled with a HMM with a GMM observation proba-
bility. Note that each chord is modeled with an individual
HMM versus the ergodic model seen in most chord de-
tection algorithms, where each chord is assigned a single
state. Further, an HMM with a single state reduces to a
GMM.



3.2 Minimum Classification Error Learning

MCE is a highly successful discriminative training approach
which improves automatic speech recognizers over ML and
maximum a posteriori estimation [5]. The optimization
criterion in MCE is to minimize the estimated classifica-
tion loss

L(Λ) =
1
J

J∑
j=1

M∑
m=1

lm(Xj ; Λ)1(Xj ∈ Ωm) (10)

where Λ are the model parameters, J is the number of
training examples, {X1, X2, . . . , XJ}, M is the number
of categories (i.e., chords), lm(·) is a loss function, and
1(Xj ∈ Ωm) is the indicator function, which is one if Xj

is in category Ωm and zero otherwise. Typically, a 0-1
loss is used for lm(·), which makes the objective function
discrete and difficult to optimize. However, a common ap-
proximation for the loss function is to replace the 0-1 loss
with a logistic function [5],

lm(Xj ; Λ) =
1

1 + exp(−γdm(Xj ; Λ) + θ)
(11)

where γ and θ are experimental constants and dm(Xj ; Λ)
is a misclassification measure.

A good indication of misclassification is the distance
between the correct class and competing classes; therefore,
the chosen misclassification measure is based on the gen-
eralized log-likelihood ratio [5]:

dm(X; Λ) = − log gm(X; Λ) + log [Gm(X; Λ)]1/η (12)

where

gm(X; Λ) = max
q
π(m)
q0

N∏
n=1

a(m)
qn−1qnb

(m)
qn (cn) (13)

Gm(X; Λ) =
1

M − 1

∑
p,p 6=m

exp[gp(X; Λ)η] (14)

where η is an experimental positive constant and the su-
perscript (m) refers to the m-th HMM. Note the misclas-
sification measure in (12) compares the probability of the
target class against a geometric average of the competing
classes. The parameter η determines the importance of the
competing classes by the degree of competition with the
target class. In particular, as η→∞, (14) returns only the
most competitive class. A gradient probabilistic descent
procedure [5] produces a set of parameters that yields a
local optimum of (10) through the update equations

Λτ+1 = Λτ − ε
∂lm(Xj ; Λ)

∂Λ

∣∣∣∣
Λ=Λτ

(15)

In order to keep the necessary constraints for an HMM den-
sity, the following transformations are used [5]:

µ̃
(m)
d (b) =

µ
(m)
d (b)

σ
(m)
d (b)

(16)

σ̃
(m)
d (b) = log σ(m)

d (b) (17)
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