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ABSTRACT

The approach of combining a multitude of audio features
and also symbolic features (through transcription of audio to
MIDI) for music classification proved useful, as shown pre-
viously. We extended the system submitted to MIREX 2008
by including temporal audio features, adding another audio
analysis algorithm based on finding templates on music, en-
hancing the polyphonic audio to MIDI transcription system
and using an ensemble of classification models specializing
on feature subsets, rather than combining all features to feed
a single classifier, like in the previous MIREX.

Recent research in music genre classification hints at a
glass ceiling being reached using timbral audio features.

1 INTRODUCTION

Classification of music by genre, artist or mood are impor-
tant tasks for retrieval and organization of music databases.
Traditionally the research domain of music classification
was divided into the audio and symbolic music analysis
and retrieval domains. Our work is aimed at combining ap-
proaches from both directions that have proved their reliabil-
ity in their respective domains. We are combining spectrum-
based audio feature extractors, that include aspects such as
rhythm, timbre and temporal evolution of signals on various
critical frequency bands, with symbolic descriptors, based
on note onsets and statistics, using a polyphonic transcrip-
tion system as an intermediate step. These features are com-
plementary; a score can provide very valuable information,
but audio features (e.g., the timbral information) are also
very important for classification, e.g. into various genres.

To extract symbolic descriptors from an audio signal it is
necessary to first employ a transcription system in order to
detect the notes stored in the signal. Transcription systems
have been investigated previously but a well-performing so-
lution for polyphonic music and a multitude of genres has
not yet been found. Though these systems might not be in
a final state for solving the transcription problem, our hy-
pothesis is that they are able to augment the performance of

music classification by introducing features on the symbolic
level.

The overall scheme of our proposed genre classification
system is shown in Figure 1. It processes an audio file in two
ways to predict its genre. While in the first branch, the au-
dio feature extraction methods described in Section 2.1 are
applied directly to the audio signal data, there is an interme-
diate step in the second branch. A polyphonic transcription
system, described in Section 2.2.1, converts the audio infor-
mation into a symbolic notation (i.e. MIDI files). Then, a
symbolic feature extractor is applied on the resulting repre-
sentation, providing a set of symbolic descriptors as output.
The audio and symbolic features extracted from the music
serve as input to a number of classifier schemes, thus pro-
ducing an ensemble of models whose predictions on new
data are combined to produce a final genre label.

The basic system is outlined and described in more detail
in [6]. We extended the approach by including temporal au-
dio features, enhancing the polyphonic transcription system
and using an ensemble of classification models, as outlined
in the following section.

Figure 1. General framework of the system



2 SYSTEM DESCRIPTION

2.1 Audio Feature Extraction

All the following descriptors are extracted from a spectral
representation of 6 sec. segments in the audio signal.
While in full length songs, the number of segments varies
and can be controlled using a ’step width’ parameter, in
a 30-second audio clip, usually 5 segments are extracted.
Rhythm Patterns and Rhythm Histograms are summarized
using the median over the 5 segments, Statistical Spectrum
Descriptors are summarized computing the mean. For Tem-
poral Rhythm Histograms and Temporal Statistical Spec-
trum Descriptors statistics that measure variation over time
(i.e. over the 5 segments) are computed. Note that in con-
trast to MIREX 2007 we did not include Onset features in
this submission (due to a change in implementation).

2.1.1 Rhythm Pattern (RP)

The feature extraction process for a Rhythm Pattern [9, 5]
is composed of two stages. First, the specific loudness sen-
sation on 24 critical frequency bands is computed, by using
a Short Time FFT, grouping the resulting frequency bands
to the Bark scale, applying spreading functions to account
for masking effects and successive transformation into the
Decibel, Phon and Sone scales. This results in a psycho-
acoustically modified Sonogram representation that reflects
human loudness sensation. In the second step, a discrete
Fourier transform is applied to this Sonogram, resulting in a
(time-invariant) spectrum of loudness amplitude modulation
per modulation frequency for each individual critical band.
After additional weighting and smoothing steps, a Rhythm
Pattern exhibits magnitude of modulation for 60 modula-
tion frequencies (between 0.17 and 10 Hz) on the 24 critical
bands. Note that when using 22khz audio, the number of
critical bands is reduced to 20 and the final Rhythm Pattern
has 1200 dimensions. For details refer to [9, 5].

2.1.2 Rhythm Histogram (RH)

A Rhythm Histogram (RH) aggregates the modulation am-
plitude values of the individual critical bands computed in a
Rhythm Pattern and is thus a lower-dimensional descriptor
for general rhythmic characteristics in a piece of audio [5].
A modulation amplitude spectrum for critical bands accord-
ing to the Bark scale is calculated, as for Rhythm Patterns.
Subsequently, the magnitudes of each modulation frequency
bin of all critical bands are summed up to a histogram, ex-
hibiting the magnitude of modulation for 60 modulation fre-
quencies between 0.17 and 10 Hz.

2.1.3 Temporal Rhythm Histogram (TRH)

Statistical measures (mean, median, variance, skewness,
kurtosis, min and max) are computed over the individual
Rhythm Histograms extracted from various segments in a
piece of audio. Thus, change and variation of rhythmic as-
pects in time are captured by this descriptor.

2.1.4 Statistical Spectrum Descriptor (SSD)

In the first part of the algorithm for computation of a Statis-
tical Spectrum Descriptor (SSD) the specific loudness sen-
sation is computed on 24 Bark-scale bands, equally as for
a Rhythm Pattern. Subsequently, the mean, median, vari-
ance, skewness, kurtosis, min- and max-value are calculated
for each individual critical band. These features computed
for the 24 bands constitute a Statistical Spectrum Descrip-
tor. SSDs describe fluctuations on the critical bands and are
able to capture additional timbral information compared to
a Rhythm Pattern, yet at a much lower dimension of the fea-
ture space, as shown in the evaluation in [5].

2.1.5 Temporal Statistical Spectrum Descriptor (TSSD)

Statistical measures (mean, median, variance, skewness,
kurtosis, min and max) are computed over the individual
Statistical Spectrum Descriptors extracted from the various
segments of a piece of audio. This captures timbral varia-
tions and changes over time in the spectrum on the individ-
ual critical frequency bands.

2.1.6 Modulation Frequency Variance Descriptor (MVD)

This descriptor measures variations over the critical fre-
quency bands for a specific modulation frequency (derived
from a Rhythm Pattern). Consider a Rhythm Pattern, i.e.
a matrix representing the amplitudes of 60 modulation fre-
quencies on 24 critical bands: The MVD vector is computed
by taking statistics (mean, median, variance, skewness, kur-
tosis, min and max) for one modulation frequency over the
24 (resp. 20) bands. A vector is computed for each of the 60
modulation frequencies. The MVD descriptor for an audio
file is computed from the mean over the multiple MVDs of
its segemens.

2.1.7 Relative Spectral Energy Matrix (RSEM)

This feature set contains the a coarse binning of the fre-
quency spectrum at 40, 120, 500, 2000, 6000, 11000 and
22050Hz respectively. Both, the amplitude as well as the
power spectrum are quantized into bins and averaged over
all SFFT windows. In addition to these simple features, two
matrices are formed by dividing each of the resulting ampli-
tude bins by each of the power bins and vice versa.



2.1.8 Template Descriptors

An algorithm coming from the blind source separation do-
main was adapted for genre classification and related tasks.
The goal of the template extractor [2] in blind source sep-
aration is to separate sounds or tones from instruments by
making use of the repetitive structure of music. In the orig-
inal setting, each instrument sound is represented by a tem-
plate which is adapted during an iterative training process
to better represent its sound, suppressing the other instru-
ments. The sum of these templates at their respective onsets
will then reconstruct the song, though this is not a perfect
reconstruction. In genre classification, the sheer amount of
information makes such an approach infeasible due to the
high demand on computational resources, thus several sim-
plifications were done leading to a different interpretation
of the templates. In order to save time, the templates are not
adapted and are initialized only by cutting a part of a track
which is chosen randomly. Thus the songs are reconstructed
only by small pieces of (possibly) other songs. Furthermore
the length of the templates is restricted to 1024 samples or
about 1/20 of a second which due to their short duration
represent the timbre or texture of the sound at a specified
time rather than a tone or a mixture of tones.

These templates themselves are then further processed to
result in the template feature set. The descriptors this set
is composed of are for example the mean onset amplitude,
mean onset distance, mean overlap with the other templates
(matrix), template count, etc.

2.2 Symbolic Feature Extraction

2.2.1 Transcription System

To complement the audio features with symbolic features,
the multiple fundamental frequency estimation system de-
scribed in [7] has been used to extract the pitches. The sys-
tem converts the audio signal into a MIDI file that will be
analyzed to extract the symbolic descriptors. Rhythm is not
considered, only pitches and note durations are extracted.
Like in [6], two parameters have been changed respect to
[7] to improve the efficiency for the genre classification task:
the maximum polyphony, which has been restricted to 3 si-
multaneous pitches, and the minimum duration of a note
(about 140 ms), to avoid very short detections.

2.2.2 Symbolic Features

A set of 53 symbolic descriptors was extracted from the
transcribed notes. This set is based on the features de-
scribed in [8], that yielded good results for monophonic
classical/jazz classification, and on the symbolic features
described in [11], used for melody track selection in MIDI
files. The number of notes, number of significant silences,
and the number of non-significant silences were computed.

The occupation rate (sounding notes periods with respect
to song length) and polyphony rate (proportion of sound-
ing note periods with more than one note active simultane-
ously) were also computed. Note pitches, pitch intervals,
note durations, silence durations, Inter Onset Intervals (IOI)
and non-diatonic notes were also analyzed (for the latter, the
song key is guessed using the algorithm described in [10]).
Each one of this properties is described by their highest and
lowest values, their range, average, relative average, stan-
dard deviation, and a normality estimation. The total num-
ber of IOI was also taken into account, as the number of
distinct pitch intervals, the most repeated pitch interval, the
sum of all note durations and an estimation of the number
of syncopations in the song, completing the symbolic fea-
ture set.

3 CLASSIFICATION

3.1 Classification Setup

With the availability of multiple feature sets as a source of
music description, and potentially also multiple classifiers,
there are several alternatives of how to design a music clas-
sification system. Once a collection of feature subsets and a
list of classification schemes are specified, the system pre-
sented here constructs an ensemble of classification models
by building a model mij for each feature subset i and clas-
sification scheme j. The aim of this approach is to obtain
a sufficiently diverse ensemble of models that will guaran-
tee, up to a certain degree, an improvement of the ensem-
ble accuracy over the best single model trained. Moreover,
even when ensemble results are not significantly better than
the best single classifier, the ensemble allows for not wor-
rying too much about which particular classifier to use for a
particular problem. Selecting sufficiently different schemes
(different classification paradigms, methods,...) the ensem-
ble provide results that are at least comparable to the best
single scheme.

Once the ensemble is trained, a Pareto-optimal classifier
selection step [3] based on pair-wise diversity and average
error measures is performed. This step aims at discarding
those models that are too similar to another one but does not
improve on its accuracy.

When a new music instance is presented to the trained
ensemble, predictions are made by the individual models,
which are then combined to produce a single genre pre-
diction outcome. The prediction combination step uses a
weighted majority voting rule, that takes into account the es-
timated accuracy αij of trained models, which will weight
each model prediction. The authority aij of each model is
established as a function of αij . These authority values are
then normalized and used as model weights, ωij . Several
choices for setting up the authority values exist. The sys-
tem variants submitted to this MIREX edition use two dif-



ferent functions for obtaining aij values from the accuracy
of the individual models: the best-worse-weighted-majority
rule [1] and the optimal weighting rule detailed in [4].
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Service (ÖAD) through the IMPACT project and the Span-
ish PROSEMUS project with code TIN2006-14932-C02.

5 REFERENCES

[1] F. Moreno-Seco; J. M. Iñesta; P. Ponce de León;
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[10] D. Rizo, J.M. Iñesta, and P.J. Ponce de León. Tree model
of symbolic music for tonality guessing. In Proc. of the
IASTED Int. Conf. on Artificial Intelligence and Appli-
cations, AIA 2006, pages 299–304, Innsbruck, Austria,
2006. IASTED, Acta Press. ISBN 0-88986-404-7.

[11] D. Rizo, P.J. Ponce de León, C. Pérez-Sancho, A. Per-
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