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Abstract 
Chord sequences are a compact and useful 

description of music, representing each beat or 
measure in terms of a likely distribution over 
individual notes without specifying the notes exactly. 
Transcribing music audio into chord sequences is 
essential for harmonic analysis, and would be an 
important component in content-based retrieval and 
indexing, but accuracy rates remain low. In this 
paper, the existing 2008 LabROSA Supervised 
Chord Recognition System is modified by using 
different machine learning methods for decoding 
structural information, thereby achieving 
significantly superior results. Specifically, the 
hidden Markov model is replaced by a large margin 
structured prediction approach (SVMstruct) using 
an enlarged feature space. Performance is 
significantly improved by incorporating features 
from future (but not past) frames. The benefit of 
SVMstruct increases with the size of the training set, 
as might be expected when comparing 
discriminative and generative models. Without yet 
exploring non-linear kernels, these improvements 
lead to state-of-the-art performance in chord 
transcription. The techniques could prove useful in 
other sequential learning tasks which currently 
employ HMMs.  
 
1. Background 
 

The Music Information Retrieval Evaluation 
eXchange [http://www.music-ir.org/mirex/2008] 
organized a contest where entrants were judged on 
their ability to identify the chords in commercial 
recordings of popular music. The evaluation was 
performed over a set of manually-labeled Beatles 
songs. Chord labels were simplified to 25 
possibilities – one for each of the 12 major chords, 
one for each of the 12 minor chords, and one 
additional label to represent ‘no chord’. The 
LabROSA Supervised Chord Recognition System 
[http://labrosa.ee.columbia.edu/projects/chords/] 
obtained the second highest accuracy in the 
evaluation, scoring about 10% relative worse than 

the best system. The modifications reported here 
improved the LabROSA system performance by 
approximately 8% relative, into the realm of state-
of-the-art. By appealing to a well-established large 
margin discriminative methodology that has been 
popularized by support vector machines, this 
performance is achieved without extensive tweaking 
or domain adaptation. Moreover, this framework 
may be combined with other approaches, and further 
increases in performance are certainly possible 
through the investigation of more elaborate 
nonlinear kernels without requiring a substantial 
reformulation of the underlying algorithms. 

The main stages of the LabROSA system may be 
summarized thus: An input song is first converted 
into beat-synchronous frames (for the Beatles songs 
used, the average number of frames per song is 459, 
with a range of 77 to 1806), each with 12 chroma 
features which are constructed to estimate the 
intensity of each semitone regardless of octave. Each 
of these 12 features is in the range [0,1]. It is 
assumed that the chord is constant within a frame. 
The remaining task is then a sequence labeling 
problem, where here we focus on accuracy per frame 
as the metric. 

The baseline LabROSA system uses a Hidden 
Markov Model (HMM) with Viterbi decoding to 
compute the most likely sequence of chord labels 
from a song’s chroma features. It is also possible to 
compute the most likely label for a sequence on a 
token by token basis, call this ‘MaxGamma’ 
decoding. Since the evaluation considers only per 
frame accuracy, we explored MaxGamma decoding, 
which generally provided a slight improvement. 

We also employed a more recent max-margin 
discriminative approach, SVMstruct, which has 
proved very successful in other applications. This 
has better regularization properties, reducing the risk 
of over-fitting when adding more features. The 
LabROSA system’s HMM uses Gaussian emissions, 
which lead to curved (quadratic) decision boundaries 
between labels. Since here only linear kernels for 
SVMstruct are considered, to allow comparison and 
as a first step towards more sophisticated kernels, in 



some runs quadratic terms were added, i.e. pairwise 
products of existing features were added as new 
features. Features from neighboring frames were 
also introduced in some models, as suggested in [Y. 
Altun, I. Tsochantaridis and T. Hofmann, “Hidden 
Markov Support Vector Machines”, ICML 2003].  

 
2. Experiments 
 

All experiments were performed on frame-level 
data, using the 180 labeled Beatles songs, and 25 
possible chord labels described above. Ten random 
permutations of all the songs were selected. For each 
permutation, every model was trained on the first 
train% (30%, 60% or 90%) of the 180 permuted 
songs. The last 10% of the permuted songs was used 
for testing, and for validation if required, 
irrespective of the amount of training data used. 
Since the HMM models do not require a validation 
set, they were simply tested on the entire final 10%. 
The SVMstruct models, however, require the 
estimation of a C parameter. This was achieved by 
splitting the final 10% into two halves – the 
penultimate 5% of the permuted songs, call this set 
A, and the last 5%, call this set B. Each model was 
trained with a broad range of values of C. The 
particular value which gave optimal performance on 
set A was used for testing the model on set B, and 
vice versa. The results on A and B were then 
combined by averaging, weighted by the respective 
number of frames, to give the accuracy per frame 
over the entire test set.  

T. Joachims’ SVMstruct code was used, 
instantiated as SVM-HMM with the precision 
constant e (epsilon) set to 0.1, the order of 
dependencies of transitions in HMM t set to the 
default 1, and the order of dependencies of 
emissions in HMM e set to the default 0. With these 
settings, the interdependency structure of the 
features and labels in the model is comparable to 
that of the HMM used in the LabROSA system.  
 
3. Results 
 

Figure 1 displays the accuracy for each model as 
the amount of training data was varied, averaged 
over the ten permutations of songs. On the far right, 
HMMv is the baseline HMM approach with Viterbi 
decoding used in the LabROSA system. To its left, 
HMMg is the same model but using MaxGamma 
decoding, showing a small improvement. 

 
Figure 1. Average accuracies for each model 

 
The models to the left are SVMstruct runs using 

various feature combinations. +0-0 on the far left 
uses the original 12 chroma features for each frame 
– the same features used by the HMM models. To its 
right: +m-n uses features from the current frame 
along with those from each of the next m frames and 
each of the previous n frames; Q at the front means 
that in addition, all quadratic cross-terms have been 
added. One exception: Q+2-0 does not use all cross-
terms since that would lead to an unwieldy 702 
dimensions, but instead uses the 324 features from 
Q+1-0 and then adds just the 12 additional chroma 
features from 2 frames ahead without cross-terms. 

The first five SVMstruct models do not show 
significant superior accuracy, but all the others do. 
In addition, HMMg shows small but statistically 
significant performance advantages over HMMv. 

Results are almost uniformly better as the size of 
the training set grows, with the rates of improvement 
of the more complex SVMstruct models higher than 
those of the HMMs. Based on the modest gains from 
going from 60% to 90% training set size, however, 
there may not be much more to gain with more 
training data. Quadratic terms provide dramatic 
improvements, suggesting further gains may be 
achieved with non-linear kernels. Adding features 
from future frames also provides striking benefits, 
but only up to two frames ahead. Interestingly, 
adding features from past frames appears not to help. 
These observations may be relevant for other audio 
processing sequence labeling tasks, including 
melody or bass line transcription and perhaps speech 
recognition. 


