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ABSTRACT

This paper describes a method submitted for the MIREX
2010 Multiple Fundamental Frequency Estimation & Track-
ing Task 1, which uses pitch candidate selection rules em-
ploying spectral structure and temporal evolution. For pre-
processing, the Resonator Time-Frequency Image of the
input signal is employed as a time-frequency representa-
tion, a noise suppression model is used, and a spectral
whitening procedure is performed. Also, tuning and inhar-
monicity parameters are extracted for the complete record-
ing and a frame-by-frame pitch salience function is gener-
ated. Pitch presence tests are performed utilizing informa-
tion from the spectral structure of pitch candidates, aiming
to suppress errors occurring at multiples and sub-multiples
of the true pitches. Additional tests for the estimation of
harmonically related F0s are performed over time, based
on the common amplitude modulation assumption.

1. INTRODUCTION

Automatic music transcription is the process of convert-
ing an audio recording into a symbolic representation using
musical notation. The core problem in automatic transcrip-
tion is the estimation of concurrent pitches in a time frame,
also called multiple-F0 estimation. Important subtasks for
automatic music transcription also include onset/offset de-
tection, loudness estimation, instrument recognition, and
extraction of rhythmic information.

The proposed system which is submitted for the MIREX
Multiple Fundamental Frequency Estimation & Tracking
Task 1 (frame-by-frame evaluation) offers a computation-
ally inexpensive way for multi-pitch estimation, using can-
didate selection and several rule-based refinement steps. A
diagram showing the system stages is displayed in Figure
1.

2. PREPROCESSING

2.1 Resonator Time-Frequency Image

Firstly, the overall loudness of the time-domain input sig-
nalx[n] is normalized to 70dB level. As a time-frequency
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representation, the resonator time-frequency image (RTFI)
was used [8]. The RTFI selects a first-order complex res-
onator filter bank to implement a frequency-dependent time-
frequency analysis. For the specific experiments, an RTFI
with constant-Q resolution is selected for the time-frequency
analysis, due to its suitability for music signal processing
techniques, because the inter-harmonic spacing is the same
for all pitches. The time interval between two successive
frames is set to 40ms, while a sampling rate of 44100Hz is
considered for the input samples. The centre frequency dif-
ference between two neighbouring filters is set to 10 cents
(the number of bins per octaveb is set to 120). The fre-
quency range is set from 27.5Hz (A0) to 12.5kHz (which
reaches up to the 3rd harmonic of C8). The employed
discrete RTFI representation will be denoted asX [n, k],
wheren is the time frame andk the frequency bin.

2.2 Spectral Whitening and Noise Suppression

Spectral whitening is employed in order to flatten the dy-
namic range of the RTFI bins. Here, a version of the real-
time adaptive whitening method proposed in [7] is applied,
modified for the log-frequencydomain. Each band is scaled,
taking into account the temporal evolution of the signal,
while the scaling factor is dependent only on past frame
values and the peak scaling value is exponentially decay-
ing.

In addition, a noise suppression approach similar to the
one in [4] was employed, due to its computational effi-
ciency. A half-octave span (60 bins) moving median fil-
ter is computed forX [k], resulting in noise estimateN [k].
Afterwards, an additional moving median filterN ′[k] of
the same span is applied, but only including the RTFI bins
whose amplitude is less than the respective amplitude of
N [k]. This results in making the noise estimateN ′[k] ro-
bust in the presence of spectral peaks that could affect the
noise estimateN [k].

3. MULTIPLE-F0 ESTIMATION

3.1 Salience Function

A salience functions[p, dp, βp] is proposed, which indi-
cates the strength of pitch candidates:

s[p, dp, βp] =

H
∑

h=1

max
mh

{

Z[khp + dp,mh]

}

(1)
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Figure 1. Diagram for the proposed multiple fundamental frequency estimation system.
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⌋. h ≥ 1 is the partial index,βp is

the inharmonicity coefficient [6] andM defines the search
range factor, which for the current experiments was set to
60. The number of overtones considered is set to 10 at
maximum.

For tuning and inharmonicity estimation, the average
spectral representation̄X[k] of the recording is employed.
The tuning deviationdp is set between -40 and +40 cents,
centered around the ideal tuning position. The range of the
inharmonicity coefficientβp is set between0 and5 · 10−4,
which is typical for piano notes [6]. A two-dimensional
maximization procedure is applied to the salience func-
tion of X̄[k] for each pitchp ∈ {21, 104} in the MIDI
scale. This results to a tuning deviation vector and an
inharmonicity coefficient vector. Afterwards, using these
settings fordp andβp, the salience function (1) is being
computed for each frame ofX [k], which is now denoted
s′[p]. From the aforementioned extracted features, a har-
monic partial sequenceV [p, h] is extracted for each frame
in order to be used for further processing (we drop the sub-
scriptk for simplicity).

3.2 Spectral Structure Rules

A set of rules aiming to suppress peaks in the salience
function that occur at multiples and sub-multiples of the
actual fundamental frequencies are applied toVk[p, h]. A
first rule for suppressing salience function peaks is setting
a minimum number for partial detection inV [p, h], similar
to [1, 8]. If p < 47, at least three partials out of the first
six need to be present in the harmonic partial sequence. If
p ≥ 47, at least four partials out of the first six should be

detected. Another processing step in order to reduce pro-
cessing time is the reduction of the number of candidates,
by selecting only the pitches with the greater salience val-
ues. In the current experiments, 9 candidate pitches are
selected froms′[p].

The spectral flatness [2] is also used for the elimina-
tion of errors occurring in subharmonic positions. In the
proposed system, the flatness of the first 6 partials of a har-
monic sequence is used:

Fl[p] =

6

√

∏6
h=1 V [p, h]

∑
6

h=1
V [p,h]

6

(3)

The ratio of the geometric mean ofV to its arithmetic mean
gives a measure of smoothness; a high value ofFl[p] in-
dicates a smooth partial sequence, while a lower value in-
dicates fluctuations in the partial values, which could in-
dicate the presence of a falsely detected pitch occurring in
a sub-harmonic position. For the current experiments, the
lowerFl[p] threshold for suppressing pitch candidates was
set to 0.1.

A modified spectral irregularity measure [8] is applied
to pairs of harmonically-related candidate F0s (wheref1 =
lf0), in order to suppress candidate pitches occurring at
multiples of the true fundamental frequency. Given the
current set of candidate pitches froms′[p], the overlap-
ping partials from non-harmonically related F0s are de-
tected and smoothed according to thespectral smoothness
assumption, which states that the spectral envelope of har-
monic sounds should form a smooth contour [3]. For each
overlapping partialV [p, h], an interpolated valueVinterp[p, h]
is estimated by performing linear interpolation using its
neighbouring partials. Afterwards, the smoothed partial
amplitudeV ′[p, h] is given bymin(V [p, h], Vinterp[p, h]),
as in [3]. The modified spectral irregularity measure is:

SI[p, l] =

3
∑

h=1

2 · V ′[p, hl]

V ′[p, h(l− 1)] + V ′[p, h(l + 1)]
(4)



For each pair of harmonically-related F0s that are present
in s′[p], the existence of the higher pitch is determined by
the value ofSI ′ (for the current experiments, a value of 0.6
was set).

3.3 Temporal Evolution Rules

Additional information is exploited in order to produce
more accurate estimates in the case of harmonically-related
F0s. Thecommon amplitude modulation (CAM) assump-
tion [5] is used in order to test the presence of a higher
pitch in the case of harmonically-related F0s. CAM as-
sumes that the partial amplitudes of a harmonic source are
correlated over time, thus the presence of an additional
source that overlaps certain partials causes the correlation
between non-overlapped partials and the overlapped par-
tials to decrease.

Tests are performed for each harmonically-related F0
pair that is still present ins′[p], comparing partials that are
not overlapped by any non-harmonically related F0 candi-
date with the partial of the fundamental. The correlation
coefficient is formed as:

Corr[p, h, l] =
Cov(X [n, kp,1], X [n, kp,hl])

√

Cov(X [n, kp,1])Cov(X [n, kp,hl])
(5)

wherekp,h indicates the frequency bin corresponding to
the h-th harmonic of pitchp, n denotes the RTFI frame
number andl the harmonic relation (eg. for octavesl = 2).
Tests are being taken for each pitchp and harmonicshl,
using a 5-frame range from the frame under consideration
(corresponding to 200ms). If there is at least one harmonic
where the correlation coefficient for a pitch is lower than a
given value (in the experiments it was set to 0.8), then the
hypothesis for the higher pitch presence is satisfied.

4. RESULTS

For the MIREX task, the system was evaluated using 40
test files from 3 different sources, consisting of several
instrument types with maximum polyphony level 5. Re-
sults are displayed in Table 1, where it can be seen that
the chroma accuracy is increased compared to the system
accuracy by 8% (implying octave errors). The system de-
tects very few false alarms and most of the errors consist
of missed detections. Overall, the system ranked 4th out
of the 8 groups that submitted for the task considering the
accuracy measure and 3rd using the chroma acuracy. It
should be noted that the system was trained only on piano
chords and that no note tracking procedure took place.

Accuracy Precision Recall
Results 0.468 0.716 0.485

Chroma Results 0.545 0.830 0.567

Table 1. Results for the submitted system.
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