Geometric Algorithms for Melodic Similarity

Mika Laitinen and Kjell Lemstrom
C-BRAHMS Group, Department of Computer Science
P.O.Box 68 (Gustaf Hillstromin katu 2b)
FIN-00014 University of Helsinki, FINLAND
{mikalait,klemstro} @cs.helsinki.fi

Keywords:
Matching

MIREX’ 10, Melodic Similarity, Geometric

1 Introduction

This abstract gives an overview on two algorithms, de-
veloped by C-BRAHMS group, submitted to take part in
MIREX’ 10 melodic similarity contest.

Both algorithms work with point-set representation of
music and are geometric algorithms designed to process
polyphonic music, but work as well with monophonic mu-
sic. The geometric approach allows us to remove and add
notes to both the query and the target, which enables us
to find partial matches. The similarity between the query
pattern and the target music is defined by the number of
elementsin Py = pr,, - - -, Pr, SO that Py matches some
Tv = tr,...,t;, if we apply some invariant. Here
0 < m < m,m <7TZ'+1,0§Ti <n, 7 < Ty, M
and n denote the number of notes in the query and the
target music, respectively. Notes in query and target are
denoted with p; and t;.

The first algorithm finds matches that satisfy a time-
scaling invariant. Essentially this means that the algorithm
is able to find intervals that have been arbitrarily enlarged
or compressed in time, as long as all the note starting posi-
tions have been scaled with the same ratio. Partial matches
are allowed, so the algorithm aims to find the largest sub-
sequence of the query pattern that can be matched to the
target music under time-scaling invariant.

Similarly, our second algorithm finds matches satisfy-
ing a time-warping invariant. Time-warping invariant con-
siders two pieces of music similar if the pitch differences
are the same between each element in pattern and target,
more formally (pr,., — Px,).pitch = (t;,,, — tr,).pitch
has to hold. Partial matches are allowed as in the first al-
gorithm.

Since both algorithms are prone to find many false
positive matches, we apply windowing, which means that
between the selected notes of a match there cannot be
too many unselected notes in either the pattern or the tar-
get. Simply this means that if we denote the window
size with w, then 7; < m;41 < min(m — 1,7 + w) and
Ti < Tiy1 < min(n—1, i4+w). This approach both speeds
up the algorithms and also makes the found matches more
relevant.

Both algorithms are sweep line algorithms, and are

computationally efficient in nature. The time complexity
is O(nmw?logn) for both algorithms. This means that
the algorithms are very efficient with conservatively sized
windows.

2 S2: Time-Scale Invariant Algorithm

The idea of this algorithm is to find all maximal subse-
quences from the target music that match some subse-
quence in the query pattern. As we are interested in time-
scale invariant matches, we aim to find a maximal pat-
tern pr, ... px, SO that there exists some o that for some
tro - trys O(Priyy —Pr,)-time = (tr,,, —t7,).time holds
for all 4.

We achieve this by implementing a sweep line algo-
rithm that at each point of the algorithm keeps track of
the maximal matches that can be extended at this point.
When a match is extended, it is passed forward to the next
point & where it can be extended, and when the algorithm
reaches this point z, the same procedure is applied. For
more detailful technical details, refer Lemstrom (2010).

For the purpose of the symbolic melodic similarity
contest, there are some shortcomings in this algorithm.
The algorithm produces quite many false positives, es-
pecially when the match is not going to be very long.
This happens even with windowing, though windowing
reduces this effect. Additionally, when the matches are
short, it is possible to find time scaled short melodies that
match, but are not relevant in any way. These shortcom-
ings are a tradeoff, since the algorithms are designed to
work in a polyphonic environment.

3 W2: Time-Warp Invariant Algorithm

Our time-warp invariant algorithm is very similar in na-
ture to the time-scale invariant algorithm. Instead of find-
ing time scaled intervals, this algorithm allows some ad-
ditional jittering between the notes, so contrary to the
previous algorithm, we now only require that there ex-
ists some o; for all i so that 0;(pr,., — P,).time =
(tr,., — tr;).time. Intuitively this means that we do not
require the piecewise vectors to have the same scaling ra-
tio in time.

The actual algorithm works analogously to its time-
scaled relative. For further technical details, we refer to
Laitinen and Lemstrom (2010).

As this algorithm has also been designed with poly-
phonic cases in mind, the previously listed shortcomings
apply for this algorithm, too. As time-warp invariant is
more flexible, it also allows more false positives, which
makes the windowing really significant filtering method
here.

References

K. Lemstrom Towards more robust geometric content-
based music retrieval. In Proc. ISMIR’10, Utrecht, Au-
gust 2010

M. Laitinen and K. Lemstrém Time-warp invariance in
geometric music retrieval. Unpublished, 2010

