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ABSTRACT 

In this paper, multiple fundamental frequency estimation 

of piano signals is formulated as a sparse representation 

problem, for which the lowest and the highest possible 

values of fundamental frequencies are estimated first.  

Then, under the assumption that the waveforms of the 

piano notes are pre-stored and that the Fourier coeffi-

cients of a given music signal can be represented as a li-

near combination of the Fourier coefficients of the pre-

stored waveforms of piano notes, we solve the sparse re-

presentation problem by L1 minimization, followed by a 

temporal smoothing based on the hidden Markov models. 

1. PROPOSED METHOD 

Multiple fundamental frequency estimation entails the 

determination of onset time, offset time, and fundamental 

frequency of each note of a music signal. It is crucial for 

content-based music information retrieval. In this work, 

we limit the input signal to that produced by piano. The 

proposed method consists of three steps: estimation of the 

fundamental frequency bounds, calculation of the sparse 

representation coefficients, and temporal smoothing. The 

first two steps are performed in a frame-based manner 

with 10-millisecond hop size between successive frames 

[1], [3] and each frame being 100 milliseconds long. 

Then in the final step we apply temporal smoothing to the 

resulting fundamental frequencies.  The detail of each 

step is described below. 

1.1 Estimation of Bounds of Fundamental Frequency  

The first step of our proposed method estimates the low-

est and highest values of the fundamental frequencies of 

an input frame to reduce the search space of the sparse 

representation coefficients. In this way, we can reduce the 

time complexity of the subsequent operations for sparse 

representation calculation.  

First, we obtain frequency-domain information (more 

specifically, Fourier coefficients) by applying the short-

time Fourier transform (STFT) to the input frame. Then 

the local maxima of the Fourier coefficients are derived 

by using the method proposed in [5]. Under the assump-

tion that the Fourier coefficient of a fundamental fre-

quency is a local maximum in the frequency domain and 

larger than the Fourier coefficients of its harmonics, irre-

levant local maxima are eliminated as follows:  

• Consider every frequency whose Fourier coefficient is 

a local maximum as a candidate fundamental frequency.  

• Rule out a candidate frequency if it is an integer mul-

tiple of another candidate but its coefficient is smaller. 

The lowest and highest frequencies of the remaining can-

didates set the search range of the fundamental frequency 

of the corresponding frame. 

1.2 Sparse Representation 

We assume that the Fourier coefficients of an input frame 

are a linear combination of the Fourier coefficients of 

pre-stored waveforms of individual piano notes [1]. De-

note the dictionary for the ith key of piano by Ai = 

[ai,1|ai,2|…|ai,ni], where ai,k is a column vector containing 

the Fourier coefficients of the kth short-time segment of 

the pre-stored waveform of that key and ni is the number 

of segments. We define the matrix A = [A1|A2|…|A88], 

which contains the Fourier coefficients of segments of 

pre-stored waveforms [2], [3]. Let the column vector y be 

the Fourier coefficients of an input frame, the problem 

now is to find a sparse coefficient vector x
*
 such that 
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where Ap = [Al|Al+1|…|Ah] and the bounds of the funda-

mental frequency derived from the first step correspond 

to the lth and the hth keys of piano. Because finding the 

solution of (1) is NP-hard, we reformulate it as the fol-

lowing constrained L1 minimization problem, 
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After obtaining the sparse coefficient vector x
*
 of (2), we 

consider that a note (a fundamental frequency) is present 

in an input frame if the summation of the coefficients cor-

responding to that note is larger than a predefined thre-

shold. 

1.3 Temporal Smoothing by Hidden Markov Models 

The STFT approach described above treats the short-time 

frames independently, leaving the temporal structure of 

music unexploited. To address this issue, we use two-

state (on and off) hidden Markov models (HMMs) to 

model each note independently [4]. For each note, we 

want to maximize 
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where qt is the state at time t,  xt is the frame beginning at 

time t, p(xt|qt) is the probability of xt being observed giv-

en qt, and  p(qt|qt-1) is the transition probability between 

states. Although we do not know p(xt|qt), from the condi-

tional probability, we have 
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Therefore, we can maximize 
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instead of (3). The sparse representation coefficient can 

be seen as an approximation of p(qt|xt). Both the prior 

p(qt) and the state transition probability p(qt|qt-1) can be 

learnt from the training data. We can apply the Viterbi 

algorithm to find the solution of (5). 

After temporal smoothing by HMMs, we obtain the 

final result. 
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