
MIREX 2011 AMS - AUDIO SIMILARITY VIA METRIC LEARNING

Brian McFee
Computer Science and Engineering
University of California, San Diego

bmcfee@cs.ucsd.edu

Gert Lanckriet
Electrical and Computer Engineering
University of California, San Diego

gert@ece.ucsd.edu

ABSTRACT

Our submissions (ML1, ML2, ML3) to the Audio Music
Similarity (AMS) task are based upon learning an optimal
distance metric over vector quantized MFCC histograms.
ML1 is optimized to predict similarity derived from a col-
laborative filter; ML2 is optimized to predict genre simi-
larity; ML3 is an unsupervised baseline which uses a native
distance metric. This abstract details the system architecture
and parameter settings.

1. INTRODUCTION

Our audio music similarity system (ML1) is motivated by
the observation that systems built upon collaborative filters
(CF) frequently out-perform competing methods based on
audio content or semantic annotations [1, 4, 8]. Because CF
methods fail on out-of-sample or long-tail content, we intro-
duced a machine learning framework that optimizes the dis-
tance between content-based audio representations in order
to predict songs by similar artists [5]. In this framework, the
similarity between artists (songs) is determined by the frac-
tion of users shared between them (their artists), and not by
abstract notions of genre.

For comparison purposes, we also include a submission
using a metric trained to predict genre similarity (ML2).

Each song in our framework is summarized by a vector
quantization (VQ) histogram, and similarity is determined
by Euclidean distance after applying a non-linear kernel trans-
formation and learned linear transformation matrix. To es-
tablish a baseline, our third submission (ML3) uses the raw
kernel distances between histograms without a learned, op-
timal transformation.

2. SIMILARITY PIPELINE

The architecture of our similarity system is depicted in Figure 1.
In this section, we assume that all parameters have been de-
termined, and focus on the “testing” path, which can be de-
composed into three phases: feature extraction, vector quan-
tization, and kernel projection.

2.1 MFCC feature extraction

Given a song’s waveform, we first down-sample to 22050Hz
and extract the time series of the first 13 Mel frequency

Codebook
training

Collaborative filter

Audio

Training data

Audio

Testing data

Similarity
estimation

Vector
quantization

MLR

Retrieval
Recommendation 1
Recommendation 2
Recommendation 3
 ...

Figure 1. Block diagram of the audio similarity architec-
ture. See [5] for details.

cepstral coefficients (MFCC), using half-overlapping 23ms
windows [7]. This time series is then augmented with the
first and second instantaneous derivatives, resulting in a time
series of ∆MFCCs X ∈ R39×T for a song of T frames. Fi-
nally, each ∆MFCC vector Xt is normalized by z-scoring:

Xt 7→ diag(σ)−1(Xt − µ), (1)

where µ, σ ∈ R39 denote the vectors of coordinate-wise
means and standard deviations as estimated on the training
set (see Section 3.1).

2.2 Vector quantization

After the time series of ∆MFCC vectors has been extracted
and normalized, each vector is then quantized to the closest
element from a codebook V of acoustic codewords. This re-
sults in a codeword histogram representation h ∈ [0, 1]|V|,
where the ith entry records the fraction of times the ith code-
word was the quantizer for a frame in X:

hi =
1

T

T∑
t=1

1

[
vi = argmin

v∈V
‖Xt − v‖

]
.

At this point, each song is represented by a point on the
|V|-dimensional probability simplex. In our submission, V
contained 1024 codewords.

2.3 Kernel projection

After computing the codeword histogram h for a song, it is
then mapped into a probability product kernel (PPK) space [3].
The mapping can be computed explicitly by computing the
square root of each coordinate:

ĥi ←
√
hi.

The PPK inner product between two histograms is equiva-
lent to their Bhattacharyya coefficient, and consequently, the
Euclidean distance after applying this mapping recovers the
same rank-ordering as that derived from Hellinger distance.
Moreover, the PPK transformation has been previously ob-
served to provide substantial improvements in accuracy for
audio similarity, when combined with metric learning [5].

After applying the PPK transformation, each song’s code-
word histogram is projected onto the top principal compo-
nents P which was constructed to capture 95% variance of
the training set.

Finally, the compressed codeword histograms are then
projected by applying the linear transformation learned by
the MLR algorithm (see Section 3.2). The symmetric, pos-
itive semi-definite matrix W learned by MLR was factored
by spectral decomposition

W = V ΛV T ⇒ L = Λ
1
2V T,

so that LTL = W . Here, the columns of V contain the
eigenvectors ofW , and Λ is a diagonal matrix containing the
eigenvalues of W (which are non-negative by construction).

The final audio representation is then the composition of
L and P with the PPK representation of h:

h 7→ LPĥ.

For a given query song, similar songs are retrieved by
rank-ordering the database by increasing Euclidean distance
from the query.

3. PARAMETERS

In this section, we describe the data-driven parameters of the
system: ∆MFCC statistics µ and σ, the codebook V , PCA
matrix P and optimal metric W . For ML1 and ML3, all
parameters were estimated from the CAL10K 1 data set [9].
More details can be found in [5]. For ML2, µ, σ and V were
learned from CAL10K, and L and P were learned from the
GTZAN genre data set [10].

3.1 Codebook training

The ML1 distance metric is optimized to predict similari-
ties extracted from a sample of Last.fm 2 collaborative filter
data [2]. In the first step of training, we partitioned the artists

1 Previously known as SWAT10k
2 http://last.fm

of CAL10K into the codebook set and the experiment set (all
other songs). Artists in the experiment set have at least 100
users that scrobbled 10 or more times; all other artists are
grouped into the codebook set.

The codebook set consists of 2646 unique artists and 5513
songs. From each artist, we randomly selected one song,
and extracted the ∆MFCC time series from a 5-second clip
(431 frames). These clips were aggregated across all code-
book artists to form a bag of approximately 1.1 million sam-
ples. From this collection, we estimated the mean µ and
coordinate-wise standard deviation σ.

Each of the 1.1 million samples was then normalized ac-
cording to (1), and clustered via online k-means to yield a
codebook V of 1024 cluster centroids. 3

3.2 ML1: Collaborative filter similarity

To learn the optimal distance metric W from collaborative
filter data, we apply the metric learning to rank (MLR) al-
gorithm [6] 4 as follows. The experiment set consisted of
5319 songs by 2015 artists. The artists were then randomly
partitioned into training (40%), validation (30%), and test
sets (30%), along with their constituent songs.

We then performed principal components analysis on the
PPK codeword histograms of training set songs to obtain the
matrix P . For the training set used here, 255 components
sufficed to capture 95% of variance.

For each training/validation/test artist, the 10 most sim-
ilar training set artists were found by computing the Jac-
card index between user populations in the collaborative fil-
ter sample. Songs by the 10 most similar training artists
are denoted as relevant during MLR training, and all other
songs are denoted as irrelevant. To train the metric W ,
we performed a parameter sweep over the slack trade-off
C ∈ {10−2, . . . , 109} and ranking loss ∆ ∈ {AUC,MRR,
NDCG@10}. The W which achieved highest performance
on the validation was then applied to the test set, and in-
cluded in ML1.

3.3 ML2: Genre similarity

Our second submission uses a metric W trained to predict
genre similarity. To learn the metric, we used the GTZAN
genre set of 1000 tracks in 10 genres [10]. Using the µ, σ
and V described in Section 3.1, each track was processed
to yield 1024-dimensional PPK codeword histograms. This
set was then projected onto its principal components to yield
317-dimensional compressed representations (again, captur-
ing 95% variance).

Each genre was then partitioned 50/50 into training and
validation sets. Following the procedure described in Sec-
tion 3.2, we learned a metric W by validating over C and ∆

3 The size of the codebook was varied from 256 to 2048; 1024 yielded
the best performance-accuracy tradeoff.

4 Our MATLAB implementation is freely available at http://
www-cse.ucsd.edu/˜bmcfee/code/mlr/.

and selecting the W which achieved highest AUC on the
validation set. Here, relevance was determined by genre
agreement instead of CF similarity. The best-performing W
was included in ML2.

3.4 ML3: Unsupervised baseline

The ML3 submission is identical to ML1, except that the
MLR step is skipped by setting L to the identity matrix.
This effectively computes a native distance between low-
dimensional projections of PPK codeword histogram repre-
sentations.

4. REFERENCES
[1] Luke Barrington, Reid Oda, and G.R.G. Lanckriet. Smarter

than genius? Human evaluation of music recommender sys-
tems. In ISMIR, 2009.

[2] O. Celma. Music Recommendation and Discovery in the Long
Tail. PhD thesis, Universitat Pompeu Fabra, Barcelona, Spain,
2008.

[3] Tony Jebara, Risi Kondor, and Andrew Howard. Probability
product kernels. JMLR, 5:819–844, Dec 2004.

[4] Joon Hee Kim, Brian Tomasik, and Douglas Turnbull. Us-
ing artist similarity to propagate semantic information. In Pro-
ceedings of the 10th International Conference on Music Infor-
mation Retrieval, 2009.

[5] B. McFee, L. Barrington, and G.R.G. Lanckriet. Learn-
ing content similarity for music recommendation, 2011.
http://arxiv.org/1105.2344.

[6] Brian McFee and G.R.G. Lanckriet. Metric learning to rank. In
Johannes Fürnkranz and Thorsten Joachims, editors, Proceed-
ings of the 27th annual International Conference on Machine
Learning (ICML), pages 775–782, Haifa, Israel, June 2010.

[7] Lawrence Rabiner and Biing-Hwang Juang. Fundamentals of
speech recognition. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1993.

[8] M. Slaney and W. White. Similarity based on rating data. In
ISMIR, pages 479–484, 2007.

[9] D. Tingle, Y. Kim, and D. Turnbull. Exploring automatic mu-
sic annotation with “acoustically-objective” tags. In IEEE In-
ternational Conference on Multimedia Information Retrieval
(MIR), 2010.

[10] G. Tzanetakis and P. Cook. Musical genre classification of au-
dio signals. Speech and Audio Processing, IEEE Transactions
on, 10(5):293 – 302, July 2002.

