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ABSTRACT

A method for the estimation of music similarity based on
a combination of timbre, rhythm and tonal content of the
songs, is presented in this report. The rhythm is estimated
by evaluating the frequency distribution of the tempo pat-
tern of the songs, while the tonal content is estimated by the
calculation of an averaged chroma profile of the song. The
algorithm is proposed to be submitted to the Audio Music
Similarity task of MIREX 2011, in occasion of the 12th IS-
MIR Conference.

1. INTRODUCTION

In MIR community, many different approaches for auto-
matic music recommendation are based on the retrieval of
content-based descriptors that are able to estimate the audio
similarity and, somehow, simulate the performance of the
human brain with regard to the evaluation of music similar-
ity.

Many classes of descriptors have been proposed for Au-
dio Music Similarity (AMS). Among them, special mention
must be given to the ones related to timbre, rhythm and tonal
content. Logan and Salomon [10] and Foote [7] proposed
the first examples of application of the Mel Frequency Cep-
stral Coefficients for the evaluation of music similarity and
recommendation. The works by Foote et al. [6] and Phole
et al. [14] describe the concept of the rhythmic similarity,
highly exploited in AMS. Xiao ans Zhou. [17] propose the
perceptual-based approach for music similarity, developing
the use of the chromagram or chroma histogram proposed
by Ellis and Poliner [4].

In this report, the combination of timbre, rhythmic and
tonal analysis for music recommendation is proposed. The
audio excerpts are analyzed and the MFCCs, the rhythmic
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pattern and the averaged chroma profile are extracted to be
compared.

2. TIMBRE DESCRIPTOR

As early described by Foote [7] and Logan [11], the Mel
Frequency Cepstral Coefficients are one of the most widely
recognized spectral descriptors for music modeling and they
have also been successfully employed in speech recognition
tasks.

Depending on the methodology employed for the calcu-
lation of the MFCCs, some form of compression of the in-
formation is necessary in order to extract a compact rep-
resentation of the cepstral behavior of the whole signal, to
be used as a comparison mean among the different songs.
Many authors proposed different solutions to this end. Pam-
palk [12], Foote [7], Aucouturier and Pachet [1] and Lo-
gan and Salomon [10] employ different approaches based
on Gaussian Mixture Models, tree structured quantization,
Monte Carlo distance and k-means method clustering, re-
spectively.

2.1 The standardized variogram

The term ‘variogram’ stands for a statistical function de-
scribing the structured spatial/temporal evolution of a ran-
dom field [16]. It is widely employed in Geostatistics for
the so called Exploratory Spatial Data Analysis (ESDA),
with the aim to describe the spatial autocorrelation of en-
vironmental variables. The Variogram can be employed in a
unidimensional field as well, to study the time variability of
an audio signal [9].

The variogram is defined as the semi-variance of the in-
crement[zα − zα+h], wherezα andzα+h are two random
variablesz separated by the distanceh. So, under the as-
sumption of stationarity and ergodicity of the random vari-
able, the experimental variogram (or semi-variance) can be
defined as follows:

γ(h) =
1

2N(h)

Nh
∑

α=1

[zα − zα+h]
2 (1)

whereNh is the number of possible pairs of samples of the
random process separated by distanceh.



The experimental variogram can be fitted by a theoreti-
cal function, among a series of specific ‘authorized’ mod-
els [16]. The theoretical variogram is strongly related to
the auto-covariance function of the increment:Cov(h) ≡

Cov(zα, zα+h). In particular, we can express the variogram
in terms of the covariance function:

γ(h) = Cov(0)− Cov(h) (2)

Hence, the typical shape of a variogram function (the theo-
retical model) fulfills:

• Its value at zero is zero:
γ(h = 0) = Cov(0)− Cov(h = 0) = 0.

• It is a monotonically increasing function, because the
corresponding covariance of the samples in a pair de-
creases with the distance.

• It tends asymptotically to the global variance of the
random variable (its own autocovariance):
γ(h ≫ 0) = Cov(0)− Cov(h ≫ 0) ∼= Cov(0).

In this work, the variogram is employed as a clustering
tool for the MFCCs of an audio signal. In [15] more de-
tails on the ability of the variogram to represent the cepstral
content of different audio sources are provided, as well as a
more formal description of the variogram function.

The MFCCs matrices are computed for 12 DCT coeffi-
cients (from the 2nd to the 13th) and the temporal variability
of each of the coefficients is described by means of the com-
putation of the variogram function. In order to compress this
information, the variogram is computed on a reduced num-
ber of distance lags (10), logarithmically distributed, and its
values are normalized by the global variance (standardized
variogram) [15].

The result is a compressed matrix of 12x10 elements (the
song signature) that is conveniently reshaped in a vector of
120 elements with the aim of making simple the comparison
of the cepstral signatures of the songs.

3. RHYTHMIC PATTERN

The rhythmic structure of a song plays a fundamental role
in music similarity evaluation. If two songs do not share a
similar tonal content (or they share it scarcely) but they have
the same rhythmic pattern, they will be judged to be similar
depending on the strength of the rhythm in the mood of the
song.

Most of the works on music similarity based on rhythm,
focus on the rhythmic spectrum. Foote and Uchihashi [5]
propose the use of the beat spectrum that describes the rhyth-
mic variations over the time. Peeters [13] describes the use
of a spectral rhythmic pattern, estimated at the onset posi-
tions, which is employed for music genre classification.

In this work a very simple approach is adopted for the
extraction of the spectrum of the inter-onset intervals. The
onsets are detected on the envelope of the signal and the
spectrum of the onset positions, weighted by the energy of
the envelope, is extracted. In [2], a very similar approach has
been employed for the estimation of the main tempo of the
song, aimed to optimize the estimation of the tonal content
of the audio signal. The onset positions are precisely located
at the peaks of the envelope.

The algorithm employed in this process can be described
in the following steps:

1. The signal is half-way rectified and low-pass filtered
with a cut-off frequency of 100 Hz (the first subband
of the filterbank employed by Dixon et al. [3]).

2. The envelope is computed using a low-pass filter on
the transformed signal with cut-off frequency of 1 Hz.

3. The cumulative distribution function (cdf) of the dif-
ferences of the zero crossing points of the first-order
derivative of the envelope is computed.

4. The onset positions are defined as the values of the
cdf exceeding the 25th percentile.

5. A triangular function is centered at each of the onset
positions detected with height proportional to the lo-
cal energy of the envelope.

6. The magnitude of the spectrum of this pseudo-rhythm
signal is computed

The spectrum of the pseudo-rhythm signal built around
the onset positions, defines the rhythm pattern of the signal,
with clear peaks when the song shows a well defined bass
line and a bunch of more representative peaks, in a more
general case. Actually, the frequency distribution of the
onsets is directly related to the tempo of the audio signal.
In practice, the rhythmic spectrum represents the distribu-
tion of the contributions of each tempo values to the overall
rhythmic structure of the song.

Using a Fourier transform of length 1024, and consid-
ering a fixed beat limit of 250 bpm, as the fastest possible
tempo to measure, it is possible to reduce the spectrum to
use in the comparison system to the bins under the frequency
4.16 Hz (≈ 250 bpm), that is, to consider only the first 126
frequency bins (extended to 128 to round to a power of two).

4. TONE PROFILES

Another of the main factors that deeply affects the percep-
tual evaluation of music similarity is the tonal content of the
audio.

Xiao and Zhou. [17] propose the use of chroma histogram
as a descriptor for the melodic content of the song for music



similarity evaluation. They argue, as an example, that peo-
ple tend to associate a high level of similarity to a pair of
different versions (with different arrangement) of the same
song. De la Bandera et al. [2] presented the use of the
chroma profiles to estimate the contributions of tonalities
and evaluate music similarity.

In this work, an average chroma profile is extracted from
each music excerpt and it is employed as an additional de-
scriptor to evaluate music similarity, together with timbre
and rhythm.

The chroma is a 12-dimensional vector representing the
overall contribution of each note to the tonal content of the
song. In this work, the chroma vector is computed on the
basis of the summation approach proposed by Fujishima [8].

Recalling the concept expressed in [2], in which a large
temporal window was employed to guarantee the analysis
of a complete melodic cell, the spectrogram of the audio
signal is computed using windows of 1 second. In order to
reduce the noisy contribution of low-amplitude samples of
the spectrum, only the components exceeding the 25% of
the maximum amplitude are taken into account.

After calculating the spectrogram, the magnitudes of the
spectrum around each of the bins of the notes between C1
and B7 are summed, and an 84-dimensional amplitude vec-
tor is extracted:

Ht(k) =

f(k)+∆+
f(k)

∑

i=f(k)−∆−

f(k)

Mt(i) (3)

whereHt(k) stands for thek-th element of the 84-dimen-
sional vector at time intervalt, f(k) is the pitch of thek-th
note, withk = 1, 2, . . . , 84, andM is the magnitude of the
spectrum. The summation is calculated within the frequency
range comprised between the left marginf(k)−∆−

f(k) and

the right onef(k) + ∆+
f(k). Note that∆−

f(k) and∆+
f(k) are

different.
Now the amplitude vector is mapped into the twelve semi-

tones. This process is done summing each tone magnitude
over the seven octaves analyzed. The chroma vector is com-
puted as follows:

Ct(k) =

7
∑

i=1

Ht(k + (i− 1) · 12) (4)

where the chroma valueCt(k) of the k-th semitone, with
k = 1, 2, . . . , 12, at timet, is the sum of the seven values
of magnitudeHt of the seven octaves involved. The termi
indexes the octaves.

The 12-dimensional mean chroma for the whole song
is computed simply averaging all the chromas obtained for
each temporal fragment. Before the summation, all the chro-
mas are normalized such that the sum of all the elements of
each profile is 1.

5. CALCULUS OF THE DISTANCE MATRIX

In this framework, the Euclidean distance (the two-norm of
the difference) of the descriptor vectors is employed as sim-
ilarity measure among the songs. The distance is weighted
in the case of the variogram-based descriptor, in order to
give more relevance to the first lag values, where most of
the information on structural variability of the timbre canbe
found. The weights are computed as follows:

W (l) =

{

20 l = 1

11− 10x/10 l > 1
(5)

wherel is the lag ordinal withl = 1, 2, . . . , 10. The weights
decrease logarithmically with the lags, with the exception
of the first value (lag = 1) that is manually fixed to approxi-
mately twice the second value. Finally, the weights are nor-
malized such that their values sum 1.

Both a full dense matrix and a sparse matrix of the 100
most similar elements for each song are returned.
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