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ABSTRACT

This paper describes our submissions to the MIREX 2011
audio music similarity and retrieval task. The proposed
method is based on a machine learning technique – sparse
coding (SC). The music similarity is not directly obtained
from computed distance measures on audio contents, in-
stead, we predict a higher level similarity scores to match
the listener’s subjective perceptions based on these dis-
tance measures and our pre-trained models. At the training
stage, we will record the mapping of computed distance
measures and the associated high level similarity scores
which is estimated from human (expert) tags. Using the
sparse coding techniques, this mapping is recorded using
two jointly learned dictionaries that respectively store the
representative computed distance and the high level simi-
larity score patterns. Both the computed distance measures
and the similarity scores can be represented as a sparse lin-
ear combination of the elements in the corresponding dic-
tionary. At the testing stage, we will find the ratios that
each element in the dictionary contributes to the newly
computed distance measures, and then use this ratio to pre-
dict the corresponding similarity scores.

1. ALGORITHM OVERVIEW

We illustrate the flowchart of our algorithm in Figure 1.
At the training stage, we first take the expert labelled tags
of the training audio to estimate multifaceted similarity
scores, such as, general-similarity, style-similarity, mood-
similarity, etc. Then, for each song, we extract a set of
computable acoustic features. Using these features, we
compute multiple distance measures for each song-pair.
Next, we jointly learn two dictionaries for the representa-
tive distance measure patterns and the associated similarity
score patterns. Given any two testing songs in the testing
stage, we will compute its distance measures to estimate
the similarity scores.
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Figure 1. Algorithm Overview

2. DATASETS AND SIMILARITY SCORE
ESTIMATION

We use the CAL500 dataset [4] as our training data. The
dataset contains 500 songs labelled with 1700 human tags.
The tags include 6 types of music properties: “emotion”,
“genre”, “instrument”, “song characteristics”, “usage” and
“vocal type”. Each song was labelled by 2 to 4 people.
The authors of the CAL500 dataset have combined all the
annotations of each song into a single annotation vector by
observing the level of agreement over all annotators. The
single annotation vector of a song represents the degree of
each tag’s belonging to that song.

To estimate the multifaceted similarity scores, we cal-
culate the scores for each tag type. We adopt the defini-
tion from psychology [5] that songs with more common
attributes are more similar to each other. As a result, the
similarity score y of type q between two music pieces is
calculated as follows,

yq =
tiq · tjq
|tiq| |tjq|

, q = 0, 1, . . . , 6, (1)

where tiq and tjq are the annotation vectors of type q on
two songs i and j, respectively. Let q = 0 represents the
tags of all types, i.e. the general similarity.



3. ACOUSTIC FEATURES AND DISTANCE
MEASURES

We used two acoustic features: the normalized MFCC code-
word histograms and the onset interval histograms. For the
MFCC codeword histogram feature, the MFCCs are ex-
tracted using the MIR toolbox given in [2]. We then follow
McFee et al. [3]’s steps to extract the codeword histograms
where we use a 1000-word codebook.

For the onset interval histogram feature, we extract on-
sets via the Beatroot 0.5.8 toobox [1]. Then, we compute
the BPM (beat per minute) value for each onset interval,
i.e. BPM = 60/L, where L is the length of an onset in-
terval (in second). Finally, we count the number of onset
intervals that lie between 20 BPM and 1000 BPM to form
a 981-bin histogram.

For our task, we choose five commonly used distance
measures, including: χ2-kernel, Euclidean distance, Man-
hattan distance, histogram intersection, and cosine distance.
Some other commonly used distances like KL divergence,
Jensen-Shannon divergence, and Bhattacharyya Distance
are not adopted because the numerical range is hard be nor-
malized to between 0 and 1 1 . All the distance measures
are applied on the two used acoustic features such that ten
measures will be obtained.

4. LEARNING SIMILARITY VIA SPARSE
CODING (SC)

The similarity learning method is inspired by Yang et al.’s
Joint Dictionary Learning (JDL) [6]. Using sparse coding
techniques, both computed distance measures and the as-
sociated similarity scores can be represented as a sparse
linear combination of atom vectors in the corresponding
dictionaries. Let x ∈ Rm and y ∈ Rn be the vectors of
multiple distance measures and the multifaceted similarity
scores, respectively. Then, x can be represented as a lin-
ear combination of the basic elements in its over-complete
dictionary Dx ∈ Rm×K that is,

x = Dxα , (2)

where α ∈ RK is a sparse vector with few nonzero entries
(� K). We assume the relationship between x and y can
be written as y = Wx, where W is an unknown transform
matrix 2 . Then y can be written as,

y = Wx = WDxα = Dyα . (3)

We define Dy = WDx to be the dictionary of similarity
scores. Although W is unknown, we can still solve α in
(2), and then y is obtained by multiplying Dy by α. To
solve (2), we apply the same solver as suggested in [6].

For learning the dictionary pair, we modify the JDL al-
gorithm [6] due to the vector normalization issue. The dic-
tionary is usually learned from a set of training songs. Let

1 Because the acoustic features are normalized histograms, the numer-
ical range of all the distance measures we used can be preserved between
0 and 1.

2 In the traditional regression problem, y is a scalar and the aim is to
find a proper W.

X = {x1,x2, · · · ,xN} and Y = {y1, · · · ,yN} respec-
tively be the distance measure vectors and the similarity
score vectors of the training songs. Yang et al. concate-
nated the matrix vertically, that is V =

[
XT Y T

]T
, D =[

DT
x DT

y

]T
and regarded it as a single dictionary learn-

ing problem. However, vector normalization is needed to
normalize each column to a unit vector such that the mag-
nitude information of vectors will be will eliminated. As
a result, we did not concatenate the two. Instead, we learn
the two dictionaries separately but share the same sparse
coefficient Z. That is,

(i) initialize Dx with randomly selected K vectors from
X

(ii) fix Dx and update Z by

Z = argmin
Z

(‖X−DxZ‖22 + λ ‖Z‖1) (4)

(iii) fix Z and update Dy by

Dy = argminDy ‖Y −DyZ‖22 ,
s.t.

∥∥Di
y

∥∥2
2
≤ 1, i = 1, 2, . . . ,K ,

(5)

(iv) fix Dy and update Z by substituting Dy in (4) instead
of Dx.

(v) repeat steps (iii) and (iv), but substitute Dx instead
of Dy.

(vi) fix Z and update Dy and Dx according to (5), re-
spectively.

(vii) iterate step (ii)∼(vi) until convergence.

5. IMPLEMENTATIONS

The uploaded package only includes the testing stage. That
is, we extract acoustic features, compute distance measures
among testing songs, solve α in (2), and then obtain y
by multiplying Dy by α. Since the first dimension of the
similarity score vector is the general similarity (computed
form all types of tag), we just select this dimension. To
conform to the MIREX output format (output distance),
We output 1−(predicted similarity scores).
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